Solveeit Logo

Question

Question: The sum of all positive divisors of 960 is...

The sum of all positive divisors of 960 is

A

3048

B

3087

C

3047

D

2180

Answer

3048

Explanation

Solution

Given number is 960, we know that 960 = 26 x 31 x 51. Therefore bases are p1 = 2, p2 = 3 and p3 = 5, and powers a1 = 6, a2 = 1 & a3 = 1. Thus sum of all the positive divisors of 960

= (p1a1+11p11)(p2a2+11p21)(p3a3+11p31)\left( \frac{{p_{1}}^{a_{1 + 1}} - 1}{p_{1} - 1} \right)\left( \frac{{p_{2}}^{a_{2 + 1}} - 1}{p_{2} - 1} \right)\left( \frac{{p_{3}}^{a_{3 + 1}} - 1}{p_{3} - 1} \right)

= (26+1121)(31+1131)(51+1151)\left( \frac{2^{6 + 1} - 1}{2 - 1} \right)\left( \frac{3^{1 + 1} - 1}{3 - 1} \right)\left( \frac{5^{1 + 1} - 1}{5 - 1} \right) = (127) (4) (6) = 3048.