Solveeit Logo

Question

Quantitative Aptitude Question on Algebra

The sum of all distinct real values of x that satisfy the equation 10x+410x=81210^x + \frac{4}{10^x} = \frac{81}{2} is

A

3log1023\log_{10} 2

B

log102\log_{10} 2

C

4log1024\log_{10} 2

D

2log1022\log_{10} 2

Answer

2log1022\log_{10} 2

Explanation

Solution

Let y=10xy = 10^x. Then, the equation becomes:
y+4y=812y + \frac{4}{y} = \frac{81}{2}
Multiply through by yy to eliminate the fraction:
y2+4=81y2y^2 + 4 = \frac{81y}{2}
Multiply through by 2 to clear the denominator:
2y2+8=81y2y^2 + 8 = 81y
Rearrange:
2y281y+8=02y^2 - 81y + 8 = 0
Now, solve this quadratic equation using the quadratic formula:
y=(81)±(81)24(2)(8)2(2)y = \frac{-(-81) \pm \sqrt{(-81)^2 - 4(2)(8)}}{2(2)}
y=81±6561644=81±64974y = \frac{81 \pm \sqrt{6561 - 64}}{4} = \frac{81 \pm \sqrt{6497}}{4}
Taking the roots, we find that y=10xy = 10^x, so:
2log102\boxed{2\log_{10}2}
Therefore, the sum of all distinct real values of xx is 2log1022\log_{10}2.