Question
Question: The sum of \[12\] term of the series: \({}^{12}{C_1} \cdot \dfrac{1}{3} + {}^{12}{C_2} \cdot \dfrac{...
The sum of 12 term of the series: 12C1⋅31+12C2⋅91+12C3⋅271+........ is-
(A) (34)12−1
(B) (43)12−1
(C) (43)12+1
(D)none of these
Solution
Use the formula (1+x)n=nC0(x)0+nC1(x)1+nC2(x)2+...........+nCn(x)n to find the sum of 12 term of the series: 12C1⋅31+12C2⋅91+12C3⋅271+........
Complete step-by-step answer:
We have to find the sum of 12 term of the series: 12C1⋅31+12C2⋅91+12C3⋅271+.........
We know that, (1+x)n=nC0(x)0+nC1(x)1+nC2(x)2+...........+nCn(x)n
Put n=12 and x=31, we get-
(1+31)12=12C0(31)0+12C1(31)1+12C2(31)2+...........+12C12(31)12
⇒ (33+1)12=12C0+12C1(31)+12C2(91)+...........+12C12(31)12
We know that nC0=1, therefore, 12C0=1
⇒ (34)12=1+12C1(31)+12C2(91)+...........+12C12(31)12
⇒12C1(31)+12C2(91)+...........+12C12(31)12=(34)12−1
Hence, option (A) is the correct answer.
Note: The value of 12C0 can be calculate as follows:
We know that nCr=r!(n−r)!n!
Put n=12,r=0
12C0=0!(12−0)!12!
12C0=12!12!
12C0=1