Solveeit Logo

Question

Question: The sum of \[1 + \dfrac{2}{5} + \dfrac{3}{{{5^2}}} + \dfrac{4}{{{5^3}}} + ....\] up to \(n\) terms i...

The sum of 1+25+352+453+....1 + \dfrac{2}{5} + \dfrac{3}{{{5^2}}} + \dfrac{4}{{{5^3}}} + .... up to nn terms is
A) (2516)(4n+5)(16.5n1)\left( {\dfrac{{25}}{{16}}} \right) - \dfrac{{\left( {4n + 5} \right)}}{{\left( {{{16.5}^{n - 1}}} \right)}}
B) (34)(2n+5)(16.5n1)\left( {\dfrac{3}{4}} \right) - \dfrac{{\left( {2n + 5} \right)}}{{\left( {{{16.5}^{n - 1}}} \right)}}
C) (37)(3n+5)(16.5n1)\left( {\dfrac{3}{7}} \right) - \dfrac{{\left( {3n + 5} \right)}}{{\left( {{{16.5}^{n - 1}}} \right)}}
D) (12)(5n+1)(3.5n+2)\left( {\dfrac{1}{2}} \right) - \dfrac{{\left( {5n + 1} \right)}}{{\left( {{{3.5}^{n + 2}}} \right)}}

Explanation

Solution

We are to first assume the given sum as any arbitrary number as SS. Then, depending on the question we are to multiply any scalar quantity with SS such to make it as kSkS and subtract it from SS in such a way that the first number of kSkS corresponds to the second number of SS. Then, we significantly operate the sum obtained in order to get to a suitable answer.

Complete step by step solution:
Let S=1+25+352+453+....+n5n1(1)S = 1 + \dfrac{2}{5} + \dfrac{3}{{{5^2}}} + \dfrac{4}{{{5^3}}} + .... + \dfrac{n}{{{5^{n - 1}}}} - - - \left( 1 \right)
Now, multiplying both sides with 15\dfrac{1}{5}, we get,
S5=15+252+353+454+....+n5n(2)\dfrac{S}{5} = \dfrac{1}{5} + \dfrac{2}{{{5^2}}} + \dfrac{3}{{{5^3}}} + \dfrac{4}{{{5^4}}} + .... + \dfrac{n}{{{5^n}}} - - - \left( 2 \right)
Now, (1)(2)\left( 1 \right) - \left( 2 \right), gives us,
4S5=1+15+152+153+...n5n\dfrac{{4S}}{5} = 1 + \dfrac{1}{5} + \dfrac{1}{{{5^2}}} + \dfrac{1}{{{5^3}}} + ... - \dfrac{n}{{{5^n}}}
Therefore, we can see that, this is clearly a GP with first term 11 and common ratio 15\dfrac{1}{5} excluding the last term n5n\dfrac{n}{{{5^n}}}.
Therefore, we know, the formula for sum of nn terms of a GP is a(1rn)(1r)\dfrac{{a(1 - {r^n})}}{{(1 - r)}}, where aa is the first term of the GP and rr is the common ratio of the GP.
Using this formula in the above equation, we get,
4S5=[1+15+152+153+...]n5n\Rightarrow \dfrac{{4S}}{5} = \left[ {1 + \dfrac{1}{5} + \dfrac{1}{{{5^2}}} + \dfrac{1}{{{5^3}}} + ...} \right] - \dfrac{n}{{{5^n}}}
4S5=1(1(15)n)(115)n5n\Rightarrow \dfrac{{4S}}{5} = \dfrac{{1\left( {1 - {{\left( {\dfrac{1}{5}} \right)}^n}} \right)}}{{\left( {1 - \dfrac{1}{5}} \right)}} - \dfrac{n}{{{5^n}}}
4S5=(115n)45n5n\Rightarrow \dfrac{{4S}}{5} = \dfrac{{\left( {1 - \dfrac{1}{{{5^n}}}} \right)}}{{\dfrac{4}{5}}} - \dfrac{n}{{{5^n}}}
Now, simplifying, we get,
4S5=5n14.5n1n5n\Rightarrow \dfrac{{4S}}{5} = \dfrac{{{5^n} - 1}}{{{{4.5}^{n - 1}}}} - \dfrac{n}{{{5^n}}}
Taking the LCM on right hand side of the equation and simplifying it, we get,
4S5=5n+154n4.5n\Rightarrow \dfrac{{4S}}{5} = \dfrac{{{5^{n + 1}} - 5 - 4n}}{{{{4.5}^n}}}
Multiplying both sides by 54\dfrac{5}{4}, we get,
S=(5n+14n54.5n).54\Rightarrow S = \left( {\dfrac{{{5^{n + 1}} - 4n - 5}}{{{{4.5}^n}}}} \right).\dfrac{5}{4}
Now, simplifying the terms, we get,
S=5n+14n516.5n1\Rightarrow S = \dfrac{{{5^{n + 1}} - 4n - 5}}{{{{16.5}^{n - 1}}}}
S=5n+1(4n+5)16.5n1\Rightarrow S = \dfrac{{{5^{n + 1}} - (4n + 5)}}{{{{16.5}^{n - 1}}}}
Dividing the numerator by the denominator, we get,
S=5n+116.5n14n+516.5n1\Rightarrow S = \dfrac{{{5^{n + 1}}}}{{{{16.5}^{n - 1}}}} - \dfrac{{4n + 5}}{{{{16.5}^{n - 1}}}}
On simplifying, we get,
S=52164n+516.5n1\Rightarrow S = \dfrac{{{5^2}}}{{16}} - \dfrac{{4n + 5}}{{{{16.5}^{n - 1}}}}
S=(2516)(4n+516.5n1)\Rightarrow S = \left( {\dfrac{{25}}{{16}}} \right) - \left( {\dfrac{{4n + 5}}{{{{16.5}^{n - 1}}}}} \right)
Therefore, the sum of the series is (2516)(4n+516.5n1)\left( {\dfrac{{25}}{{16}}} \right) - \left( {\dfrac{{4n + 5}}{{{{16.5}^{n - 1}}}}} \right), the correct answer is 1.

Note:
In these questions, we are to just obtain a sequence in which we can easily add the terms, either in a sequence, for which we know the sum of the terms up to nn terms, like the sum of first nn natural numbers or the sum of squares of first nn natural numbers. Or in the form of AP, GP or HP, as we can find the sum of nn terms of these sequences.