Solveeit Logo

Question

Mathematics Question on sequences

The sum n=12n2+3n+4(2n)!\displaystyle\sum_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !} is equal to:

A

11e2+72e4\frac{11 e }{2}+\frac{7}{2 e }-4

B

11e2+72e\frac{11 e }{2}+\frac{7}{2 e }

C

13e4+54e4\frac{13 e }{4}+\frac{5}{4 e }-4

D

13e4+54e\frac{13 e }{4}+\frac{5}{4 e }

Answer

13e4+54e4\frac{13 e }{4}+\frac{5}{4 e }-4

Explanation

Solution

n=12n2+3n+4(2n)!\displaystyle\sum_{n=1}^{∞}\frac {2n2+3n+4}{(2n)!}

12n=12n(2n1)+8n+8(2n)!\frac 12 \displaystyle\sum_{n=1}^{∞}\frac {2n(2n−1)+8n+8}{(2n)!}

12n=11(2n2)!+2n=11(2n1)!+4n=11(2n)!\frac 12\displaystyle\sum_{n=1}^{∞}\frac {1}{(2n−2)!}+2\displaystyle\sum_{n=1}^{∞}\frac {1}{(2n−1)!}+4\displaystyle\sum_{n=1}^{∞}\frac {1}{(2n)!}

e=1+1+12!+13!+14!+.e=1+1+\frac {1}{2!}+\frac {1}{3!}+\frac {1}{4!}+….

e1=11+12!13!+14!+.e^{-1}=1-1+\frac {1}{2!}-\frac {1}{3!}+\frac {1}{4!}+….

(e+1e)=2(1+12!+14!+.)(e+\frac 1e)=2(1+\frac {1}{2!}+\frac {1}{4!}+…….)

e1e=(1+13!+15!+..)e−\frac 1e=(1+\frac {1}{3!}+\frac {1}{5!}+…..)
Now,
12(n=11(2n2)!)+2n=11(2n1)!+4n=11(2n)!\frac 12(\displaystyle\sum_{n=1}^{∞}\frac {1}{(2n−2)!})+2\displaystyle\sum_{n=1}^{∞}\frac {1}{(2n−1)!}+4\displaystyle\sum_{n=1}{∞}\frac {1}{(2n)!}

=12[e+1e2]+2[e1e2]+4(e+1e22)=\frac 12[\frac {e+\frac 1e}{2}]+2[\frac {e−\frac 1e}{2}]+4(\frac {e+\frac 1e−2}{2})

=(e+1e)4+e1e+2e+2e4=\frac {(e+\frac 1e)}{4}+e−\frac 1e+2e+\frac 2e−4

=13e4+54e4=\frac {13e}{4}+\frac {5}{4e}−4

Therefore, the correct option is (C): 13e4+54e4\frac {13e}{4}+\frac {5}{4e}−4.