Question
Mathematics Question on sequences
The sum n=1∑∞(2n)!2n2+3n+4 is equal to:
A
211e+2e7−4
B
211e+2e7
C
413e+4e5−4
D
413e+4e5
Answer
413e+4e5−4
Explanation
Solution
n=1∑∞(2n)!2n2+3n+4
21n=1∑∞(2n)!2n(2n−1)+8n+8
21n=1∑∞(2n−2)!1+2n=1∑∞(2n−1)!1+4n=1∑∞(2n)!1
e=1+1+2!1+3!1+4!1+….
e−1=1−1+2!1−3!1+4!1+….
(e+e1)=2(1+2!1+4!1+…….)
e−e1=(1+3!1+5!1+…..)
Now,
21(n=1∑∞(2n−2)!1)+2n=1∑∞(2n−1)!1+4n=1∑∞(2n)!1
=21[2e+e1]+2[2e−e1]+4(2e+e1−2)
=4(e+e1)+e−e1+2e+e2−4
=413e+4e5−4
Therefore, the correct option is (C): 413e+4e5−4.