Solveeit Logo

Question

Mathematics Question on binomial distribution

The sum i0m(10i)(20mi),\displaystyle \sum_{i-0}^{m} \binom{10}{i} \binom{20}{m-i}, where (pq)=0ifp>q, \binom{p}{q}=0 \, if \, p>q, is maximum when m is equal to

A

5

B

10

C

15

D

20

Answer

15

Explanation

Solution

The correct answer is C:15
Given that;
i=0m(10i)(mi20)\displaystyle \sum^{m}_{i=0}(\frac{10}{i})(^{20}_{m-i})
=i=0m10ci×20cmi=\displaystyle \sum^m_{i=0}10{c_{i}}\times20_{c_{m-i}}
=10c0×20cm+10c1×20cm1+10c2×20cm2+.....10cm=10_{c_{0}}\times20_{c_{m}}+10_{c_{1}}\times20_{c_{m-1}}+10_{c_{2}}\times20_{c_{m-2}}+.....10_{c_{m}}
=30cm=30_{c_{m}}
We know that;
m=n2\therefore m=\frac{n}{2} for ncmn_{c_{m}}to be maximum
m=302\therefore m=\frac{30}{2}
m=15m=15
sum