Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:

i=150xi=212,i=150xi2=902.8,i=150yi=261,i=150yi=12=1457.6\sum_{i=1}^{50}x_i=212,\sum_{i=1}^{50}x_i^2=902.8,\sum_{i=1}^{50}y_i=261,\sum_{i=1}^{50}y_{i=1}^2=1457.6

Which is more varying, the length or weight?

Answer

i=150xi=212,i=150xi2=902.8\sum_{i=1}^{50}x_i=212,\sum_{i=1}^{50}x_i^2=902.8

Here, N = 50

Mean,xˉ=i=150yiN21250=4.24Mean,\bar{x}=\frac{\sum_{i=1}^{50}y_i}{N}\frac{212}{50}=4.24

Varience(σ2)=1Ni=150(xixˉ)2Varience(σ^2)=\frac{1}{N}\sum_{i=1}^{50}(x_i-\bar{x})^2

=150i=150(xi4.24)2=\frac{1}{50}\sum_{i=1}^{50}({x_i}-4.24)^2

=150i=150[xi28.48xi+17.97]=\frac{1}{50}\sum_{i=1}^{50}[{x_i^2}-8.48x_i+17.97]

=150i=150[xi28.48i=150xi+17.97×50]=\frac{1}{50}\sum_{i=1}^{50}[{x_i^2}-8.48\sum_{i=1}^{50}x_i+17.97×50]

15[902.88.48×(212)+898.5]\frac{1}{5}[902.8-8.48×(212)+898.5]

=150[1801.31797.76]=\frac{1}{50}[1801.3-1797.76]

=150×3.54=\frac{1}{50}×3.54

=0.07

∴ standard deviation, σ1 (Length)=√0.07=0.26

∴ C.V (Length)= standarddeviationMean×100=0.264.24×100=6.13\frac{standard \,deviation}{Mean}×100=\frac{0.26}{4.24}×100=6.13

i=150yi=261,i=150yi=12=1457.6\sum_{i=1}^{50}y_i=261,\sum_{i=1}^{50}y_{i=1}^2=1457.6

Mean,yˉ=i=150yi=150×261=5.22∴\,Mean,\bar{y}=\sum_{i=1}^{50}y_i=\frac{1}{50}×261=5.22

Varience(σ22)=1Ni=150(yiyˉ)2Varience(σ_2^2)=\frac{1}{N}\sum_{i=1}^{50}(y_i-\bar{y})^2

=150i=150(yi5.22)2=\frac{1}{50}\sum_{i=1}^{50}({y_i}-5.22)^2

=150i=150[yi210.44yi+27.24]=\frac{1}{50}\sum_{i=1}^{50}[{y_i^2}-10.44y_i+27.24]

=150i=150[yi210.44i=150yi+27.24×50]=\frac{1}{50}\sum_{i=1}^{50}[{y_i^2}-10.44\sum_{i=1}^{50}y_i+27.24×50]

15[1457.610.44×(261)+1362]\frac{1}{5}[1457.6-10.44×(261)+1362]

=150[2819.62724.84]=\frac{1}{50}[2819.6-2724.84]

=150×94.76=\frac{1}{50}×94.76

1.891.89

∴ standard deviation, σ2 (Weight)=√1.89=1.37

∴ C.V (Weight) = standarddeviationMean×100=1.375.22×100=26.24\frac{standard \,deviation}{Mean}×100=\frac{1.37}{5.22}×100=26.24

Thus, C.V. of weights is greater than the C.V. of lengths. Therefore, weights vary more than the lengths.