Question
Mathematics Question on Variance and Standard Deviation
The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
∑i=150xi=212,∑i=150xi2=902.8,∑i=150yi=261,∑i=150yi=12=1457.6
Which is more varying, the length or weight?
∑i=150xi=212,∑i=150xi2=902.8
Here, N = 50
∴ Mean,xˉ=N∑i=150yi50212=4.24
Varience(σ2)=N1∑i=150(xi−xˉ)2
=501∑i=150(xi−4.24)2
=501∑i=150[xi2−8.48xi+17.97]
=501∑i=150[xi2−8.48∑i=150xi+17.97×50]
51[902.8−8.48×(212)+898.5]
=501[1801.3−1797.76]
=501×3.54
=0.07
∴ standard deviation, σ1 (Length)=√0.07=0.26
∴ C.V (Length)= Meanstandarddeviation×100=4.240.26×100=6.13
∑i=150yi=261,∑i=150yi=12=1457.6
∴Mean,yˉ=∑i=150yi=501×261=5.22
Varience(σ22)=N1∑i=150(yi−yˉ)2
=501∑i=150(yi−5.22)2
=501∑i=150[yi2−10.44yi+27.24]
=501∑i=150[yi2−10.44∑i=150yi+27.24×50]
51[1457.6−10.44×(261)+1362]
=501[2819.6−2724.84]
=501×94.76
1.89
∴ standard deviation, σ2 (Weight)=√1.89=1.37
∴ C.V (Weight) = Meanstandarddeviation×100=5.221.37×100=26.24
Thus, C.V. of weights is greater than the C.V. of lengths. Therefore, weights vary more than the lengths.