Solveeit Logo

Question

Question: The sum and product of the mean and variance of a binomial distribution are 24 and 128 respectively....

The sum and product of the mean and variance of a binomial distribution are 24 and 128 respectively. The distribution is -

A

(17+18)12\left( \frac { 1 } { 7 } + \frac { 1 } { 8 } \right) ^ { 12 }

B

(14+34)16\left( \frac { 1 } { 4 } + \frac { 3 } { 4 } \right) ^ { 16 }

C

(16+56)24\left( \frac { 1 } { 6 } + \frac { 5 } { 6 } \right) ^ { 24 }

D

(12+12)32\left( \frac { 1 } { 2 } + \frac { 1 } { 2 } \right) ^ { 32 }

Answer

(12+12)32\left( \frac { 1 } { 2 } + \frac { 1 } { 2 } \right) ^ { 32 }

Explanation

Solution

Given m + s2 = 24, ms2 = 128

\ m = 16 or 8

m = 16 Ž s2 = 8

and m = 8 Ž s2 = 56

Case 1 : np = 16, npq = 8 give

n = 32, p = q = 12\frac { 1 } { 2 } Case 2 : np = 8 and npq = 56 give

q = 7 which is not feasible