Solveeit Logo

Question

Question: The sum \({}^{20}{C_0} + {}^{20}{C_1} + {}^{20}{C_2} + .....{}^{20}{C_{10}}\) is equal to A.\({2^{...

The sum 20C0+20C1+20C2+.....20C10{}^{20}{C_0} + {}^{20}{C_1} + {}^{20}{C_2} + .....{}^{20}{C_{10}} is equal to
A.220+20!2(10!)2{2^{20}} + \dfrac{{20!}}{{2{{\left( {10!} \right)}^2}}}
B.219+12.20!(10!)2{2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{{{\left( {10!} \right)}^2}}}
C.219+20C10{2^{19}} + {}^{20}{C_{10}}
D.None of these

Explanation

Solution

The given terms are coefficients of binomial expansion of (1+x)n , where n=20. Taking x=1 , we get the sum of the coefficient. Using the relation nCr=nCnr{}^n{C_r} = {}^n{C_{n - r}} and further simplification, we get the required solution.

Complete step-by-step answer:
We know that binomial expansion of a + b to the power n is given by (a + b)n= (nC0)anb0+ (nC1)an1b + (nC2)an2b2+  + (nCn1)abn1+ (nCn)a0bn{\left( {a{\text{ }} + {\text{ }}b} \right)^n} = {\text{ }}\left( {^n{C_0}} \right){a^n}{b^0} + {\text{ }}\left( {^n{C_1}} \right){a^{n - 1}}b{\text{ }} + {\text{ }}\left( {^n{C_2}} \right){a^{n - 2}}{b^2} + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^n{C_{n - 1}}} \right)a{b^{n - 1}} + {\text{ }}\left( {^n{C_n}} \right){a^0}{b^n}
Using the above equation of binomial expansion, the expansion of (1+x)20{\left( {1 + x} \right)^{20}}, n=20,is given by,
(1+x)20= (20C0)x0+ (20C1)x1 + (20C2)x2+  + (20C19)x19+ (20C20)x20{\left( {1 + x} \right)^{20}} = {\text{ }}\left( {^{20}{C_0}} \right){x^0} + {\text{ }}\left( {^{20}{C_1}} \right){x^1}{\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right){x^2} + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_{19}}} \right){x^{19}} + {\text{ }}\left( {^{20}{C_{20}}} \right){x^{20}}
Taking x= 1, the above binomial expansion becomes,
(1+1)20= (20C0)+ (20C1) + (20C2)+  + (20C19)+ (20C20){\left( {1 + 1} \right)^{20}} = {\text{ }}\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_{19}}} \right) + {\text{ }}\left( {^{20}{C_{20}}} \right)
Now we have the sum of coefficients as the 20th power of 2.
We know that, nCr=nCnr{}^n{C_r} = {}^n{C_{n - r}}, using this in above equation, we get,
(2)20= 2×[(20C0)+ (20C1) + (20C2)+  + (20C9)+(20C10)](20C10){\left( 2 \right)^{20}} = {\text{ 2}} \times \left[ {\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_9}} \right) + \left( {^{20}{C_{10}}} \right)} \right] - \left( {^{20}{C_{10}}} \right)
On adding both sides with (20C10)\left( {^{20}{C_{10}}} \right), we get
(2)20+(20C10)= 2×[(20C0)+ (20C1) + (20C2)+  + (20C9)+(20C10)]{\left( 2 \right)^{20}} + \left( {^{20}{C_{10}}} \right) = {\text{ 2}} \times \left[ {\left( {^{20}{C_0}} \right) + {\text{ }}\left( {^{20}{C_1}} \right){\text{ }} + {\text{ }}\left( {^{20}{C_2}} \right) + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^{20}{C_9}} \right) + \left( {^{20}{C_{10}}} \right)} \right]
Dividing both sides with 2 and reversing the equation, we get
[(20C0) + (20C1) + (20C2)  + (20C9)+(20C10)] = 12((2)20+(20C10))\left[ {\left( {^{{\text{20}}}{{\text{C}}_{\text{0}}}} \right){\text{ + }}\left( {^{{\text{20}}}{{\text{C}}_{\text{1}}}} \right){\text{ + }}\left( {^{{\text{20}}}{{\text{C}}_{\text{2}}}} \right){\text{ }} \ldots {\text{ }}+{\text{ }}\left( {^{{\text{20}}}{{\text{C}}_{\text{9}}}} \right) + \left( {^{20}{C_{10}}} \right)} \right]{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}\left( {{{\left( {\text{2}} \right)}^{{\text{20}}}} + \left( {^{{\text{20}}}{{\text{C}}_{{\text{10}}}}} \right)} \right)
By opening the bracket and further simplification, we get,
 = 219+12.(20C10){\text{ = }}{{\text{2}}^{{\text{19}}}} + \dfrac{{\text{1}}}{{\text{2}}}{\text{.}}\left( {^{{\text{20}}}{{\text{C}}_{{\text{10}}}}} \right)
Therefore, the sum of given terms of binomial expansions is given by,
 = 219 + 12.20!(10!)2{\text{ = }}{{\text{2}}^{{\text{19}}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{.}}\dfrac{{{\text{20!}}}}{{{{\left( {{\text{10!}}} \right)}^{\text{2}}}}}
This answer is not in any of the options. So, we can mark none of these.
So the correct answer is option D

Note: The coefficients of binomial expansion of power n is the nth row of the pascal's triangle. The solution can also be started from taking the binomial expansion of 1 + 1 to the power n (20 in this case). Concept of permutations and combinations are essential for binomial expansion, especially to find out the coefficients. But these concepts are not used in this particular problem. A common error while doing this problem is that the middle term in the expansion (20C10)\left( {^{20}{C_{10}}} \right) is not included in the bracket after using the relation nCr=nCnr{}^n{C_r} = {}^n{C_{n - r}}. It must be included in the bracket by changing the equation appropriately.