Question
Mathematics Question on Sum of First n Terms of an AP
The sum 1+2!1+a+3!1+a+a2+...∞ is equal to
A
ea
B
a−1ea−e
C
(a−1)ea
D
(a+1)ea
Answer
a−1ea−e
Explanation
Solution
The given series is 1+2!1+a+3!1+a+a2+4!1+a+a2+a3+..... Here , Tn=n!1+a+a2+a3+...tonterms =(1−a)(n!)1(1−an)=1−a1(n!1−an) ∴T1+T2+T3+....to ∞ =1−a1[1!1−a+2!1−a2+3!1−a3+...to ∞] =1−a1[(1!1+2!1+3!1+...to∞)−(1!a+2!a2+3!a3+....to∞)] =1−a1[(e−1)−(ea−1)] =1−ae−ea=a−1ea−e