Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

The sum 1+1+a2!+1+a+a23!+...1+\frac{1+a}{2!} + \frac{1+a+a^{2}}{3!} + ... \infty is equal to

A

eae^a

B

eaea1\frac{e^{a} -e}{a-1}

C

(a1)ea(a- 1) e^a

D

(a+1)ea( a +1)e^a

Answer

eaea1\frac{e^{a} -e}{a-1}

Explanation

Solution

The given series is 1+1+a2!+1+a+a23!+1+a+a2+a34!+.....1+ \frac{1+a}{2!} + \frac{1+a+a^{2}}{3!} + \frac{1+a+a^{2} +a^{3}}{4!} + ..... Here , Tn=1+a+a2+a3+...tontermsn!T_{n} = \frac{1+a+a^{2}+a^{3} +...\text{to} \, n \, \text{terms}}{n!} =1(1an)(1a)(n!)=11a(1ann!) = \frac{1\left(1-a^{n}\right)}{\left(1-a\right)\left(n!\right)} = \frac{1}{1-a} \left(\frac{1-a^{n}}{n!}\right) T1+T2+T3+....to  \therefore T_{1} + T_{2} + T_{3} + .... \text{to } \infty =11a[1a1!+1a22!+1a33!+...to ]= \frac{1}{1-a} \left[\frac{1-a}{1!} + \frac{1-a^{2}}{2!} + \frac{1-a^{3}}{3!} + ... \text{to } \infty\right] =11a[(11!+12!+13!+...to)(a1!+a22!+a33!+....to)] = \frac{1}{1-a} \left[\left(\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + ... \text{to} \, \infty\right) - \left(\frac{a}{1!} + \frac{a^{2} }{2!} + \frac{a^{3}}{3!} + ....\text{to} \, \infty\right)\right] =11a[(e1)(ea1)]= \frac{1}{1-a}\left[\left(e-1\right) - \left(e^{a}-1\right)\right] =eea1a=eaea1=\frac{e-e^{a}}{1-a} = \frac{e^{a}-e}{a-1}