Solveeit Logo

Question

Physics Question on mechanical properties of solids

The stress along the length of a rod (with rectangular cross section) is 1%1\% of the Young's modulus of its material. What is the approximate percentage of change of its volume ? (Poisson's ratio of the material of the rod is 0.30.3)

A

0.03

B

0.01

C

0.007

D

0.004

Answer

0.004

Explanation

Solution

\because Stress, FΔA=1%\frac{F}{\Delta A}=1 \% of Y=Y100Y=\frac{Y}{100}
But Young's modulus, Y= stress  strain =FΔAΔllY=\frac{\text { stress }}{\text { strain }}=\frac{\frac{F}{\Delta A}}{\frac{\Delta l}{l}}
Y=Y100Δll(\therefore Y=\frac{\frac{Y}{100}}{{\frac{\Delta l}{l}}} \,\,\left(\right. putting FΔA=Y100)\left.\frac{F}{\Delta A}=\frac{Y}{100}\right)
Δll=1100\therefore \frac{\Delta l}{l}=\frac{1}{100}
Poisson's ratio, σ=ΔrrΔll\sigma=\frac{-\frac{\Delta r}{r}}{\frac{\Delta l}{l}}
Δrr=σΔll=0.3100\therefore \frac{\Delta r}{r}=-\sigma \cdot \frac{\Delta l}{l}=\frac{-0.3}{100}
Δrr=0.3100\frac{\Delta r}{r}=\frac{-0.3}{100}
\therefore Change in volume, ΔVV=2Δrr+Δll\frac{\Delta V}{V}=\frac{2 \Delta r}{r}+\frac{\Delta l}{l}
=2×(0.3)100+1100=\frac{2 \times(-0.3)}{100}+\frac{1}{100}
=10.6100=0.4100=\frac{1-0.6}{100}=\frac{0.4}{100}
ΔV%=0.4%\therefore \Delta V \% =0.4 \%