Solveeit Logo

Question

Question: The stationary wave y = 2a sin kx cos wt in a stretched string is the result of superposition of y1 ...

The stationary wave y = 2a sin kx cos wt in a stretched string is the result of superposition of y1 = a sin (kx – wt) and

A

y2 = a cos (kx + ω\omegat)

B

y2 = a sin (kx + ω\omegat)

C

y2 = a cos (kx – ω\omegat)

D

y2 = a sin (kx – ω\omegat)

Answer

y2 = a sin (kx + ω\omegat)

Explanation

Solution

y1=asin(kxωt)y_{1} = a\sin(kx - \omega t)

y2=asin(kx+ωt)y_{2} = a\sin(kx + \omega t)

According to the principle of superposition, the resultant wave is

y=y1+y2y = y_{1} + y_{2}

=asin(ksωt)+asin(kx+ωt)= a\sin(ks - \omega t) + a\sin(kx + \omega t)

Using trigonometric identity

sin(A+B)+sin(AB)=2sinAcosB\sin(A + B) + \sin(A - B) = 2\sin A\cos B

We get y=2asinkxcosωty = 2a\sin kx\cos\omega t