Question
Question: The stationary wave y = 2a sin kx cos wt in a stretched string is the result of superposition of y1 ...
The stationary wave y = 2a sin kx cos wt in a stretched string is the result of superposition of y1 = a sin (kx – wt) and
A
y2 = a cos (kx + ωt)
B
y2 = a sin (kx + ωt)
C
y2 = a cos (kx – ωt)
D
y2 = a sin (kx – ωt)
Answer
y2 = a sin (kx + ωt)
Explanation
Solution
y1=asin(kx−ωt)
y2=asin(kx+ωt)
According to the principle of superposition, the resultant wave is
y=y1+y2
=asin(ks−ωt)+asin(kx+ωt)
Using trigonometric identity
sin(A+B)+sin(A−B)=2sinAcosB
We get y=2asinkxcosωt