Question
Question: The stationary wave \[y = 2a\left( {\sin kx\cos \omega t} \right)\], in a closed organ pipe, is the ...
The stationary wave y=2a(sinkxcosωt), in a closed organ pipe, is the result of the superposition of y=asin(ωt−kx) and:
A. y=−acos(ωt+kx)
B. y=acos(ωt+kx)
C. y=asin(ωt−kx)
D. y=−asin(ωt+kx)
Solution
The above problem can be resolved using the fundamentals of the stationary wave. Along with this, the concept of the superposition principle is also required to be applied. In this problem, the mathematical equation for the stationary wave is given, then by applying the mathematical tools, we are supposed to solve the equation. Then by observing the result obtained in the final equation, one can get the desired answer.
Complete step by step solution
The expression for the given stationary wave is,
y=2a(sinkxcosωt)
Solve the above equation by adding and subtracting the term, acoskxsinωt.