Question
Mathematics Question on types of differential equations
The statement
(p⇒q)∨(p⇒r)
is NOT equivalent to
A
(p∧(∼r))⇒q
B
(∼q)⇒((∼r)∨p)
C
p⇒(q∨r)
D
(p∧(∼q))⇒r
Answer
(∼q)⇒((∼r)∨p)
Explanation
Solution
(A)(p∧(∼r))⇒q
∼(p∧∼r)∨q
≡(∼p∨r)∨q
≡∼p∨(r∨q)
≡p→(q∨r)
≡(p⇒q)∨(p⇒r)
(C)p⇒(q∨r)
≡∼p∨(q∨r)
≡(∼p∨q)∨(∼p∨r)
≡(p→q)∨(p→r)
(D)(p∧∼q)⇒r
≡p⇒(q∨r)
≡(p⇒q)∨(p⇒r)
So, the correct option is (B): (∼q)⇒((∼r)∨p)