Solveeit Logo

Question

Mathematics Question on types of differential equations

The statement
(pq)(pr)(p⇒q)∨(p⇒r)
is NOT equivalent to

A

(p(r))q(p∧(∼r))⇒q

B

(q)((r)p)(∼q)⇒((∼r)∨p)

C

p(qr)p⇒(q∨r)

D

(p(q))r(p∧(∼q))⇒r

Answer

(q)((r)p)(∼q)⇒((∼r)∨p)

Explanation

Solution

(A)(p(r))q(A)(p∧(∼r))⇒q
(pr)q∼(p∧∼r)∨q
(pr)q≡(∼p∨r)∨q
p(rq)≡∼p∨(r∨q)
p(qr)≡p→(q∨r)
(pq)(pr)≡(p⇒q)∨(p⇒r)
(C)p(qr)(C)p⇒(q∨r)
p(qr)≡∼p∨(q∨r)
(pq)(pr)≡(∼p∨q)∨(∼p∨r)
(pq)(pr)≡(p→q)∨(p→r)
(D)(pq)r(D)(p∧∼q)⇒r
p(qr)≡p⇒(q∨r)
(pq)(pr)≡(p⇒q)∨(p⇒r)
So, the correct option is (B): (q)((r)p)(∼q)⇒((∼r)∨p)