Solveeit Logo

Question

Question: The statement \(\left( {p \wedge q} \right) \wedge \left( {\neg p \vee \neg q} \right)\) is___ A.A...

The statement (pq)(¬p¬q)\left( {p \wedge q} \right) \wedge \left( {\neg p \vee \neg q} \right) is___
A.A tautology
B.A contradiction
C.A contingency
D.Neither a tautology nor a contradiction

Explanation

Solution

First, we will write the truth table of (pq)\left( {p \wedge q} \right), that is the statement is true when both pp and qq are true, otherwise it is false. Next, write the truth table of (¬p¬q)\left( {\neg p \vee \neg q} \right). For ¬p\neg p the result is opposite. Also, (pq)\left( {p \vee q} \right) is false only when pp and qq is false. Then, determine the type of statement from the result.

Complete step-by-step answer:
We will first construct a truth table corresponding to the given statement (pq)( p q)\left( {p \wedge q} \right) \wedge \left( {~p \vee ~q} \right)
We will find the truth table of (pq)\left( {p \wedge q} \right)
We know that (pq)\left( {p \wedge q} \right) is true when both pp and qq are true, otherwise it is false.

ppqq(pq)\left( {p \wedge q} \right)
TTT
TFF
FTF
FFF

Now, write the truth table of (¬p¬q)\left( {\neg p \vee \neg q} \right)
(pq)\left( {p \vee q} \right) is false only when pp and qq is false.

ppqq¬p\neg p¬q\neg q( p q)\left( {~p \vee ~q} \right)
TTFFF
TFFTT
FTTFT
FFTTT

Next, we will write the truth table of (pq)(¬p¬q)\left( {p \wedge q} \right) \wedge \left( {\neg p \vee \neg q} \right)

(pq)\left( {p \wedge q} \right)(¬p¬q)\left( {\neg p \vee \neg q} \right)(pq)( p q)\left( {p \wedge q} \right) \wedge \left( {~p \vee ~q} \right)
TFF
FTF
FTF
FTF

Since, we have false in every row, then the statement is a contradiction.
Hence, option B is correct.

Note: If the result in every row is true, then the statement is a tautology. If the result is false for every row, then the statement is contradictory. If the proposition is neither a tautology nor a contradiction, then the statement is a contingency.