Solveeit Logo

Question

Question: The standard reduction potential of \[A{{g}^{+}}/Ag\] at 298 K is 0.799 volt. Given for AgI , \[{{K}...

The standard reduction potential of Ag+/AgA{{g}^{+}}/Ag at 298 K is 0.799 volt. Given for AgI , Ksp=8.7×1017{{K}_{sp}}=8.7\times {{10}^{-17}}, evaluate the potential of the Ag+/AgA{{g}^{+}}/Ag in a saturated solution of AgI. Also calculate the standard reduction potential of the I/AgI/Ag{{I}^{-}}/AgI/Ag electrode.

Explanation

Solution

Nernst equation is used to calculate cell potential asked in the question. Ksp{{K}_{sp}} refers to the solubility product of the salt. It is merely the product of the concentration of ions of salt present in the solution.

Complete step by step solution:
Here, we will first find the potential of Ag+/AgA{{g}^{+}}/Ag in the saturated solution of AgI. We will use the Nernst equation.
Ecell=EocellRTnFlnQ{{E}_{cell}}={{E}^{o}}_{cell}-\dfrac{RT}{nF}\operatorname{lnQ}………………….(1)
Here, n=number of electrons involved in the reaction
FF=Faraday constant=96500 Cmol1Cmo{{l}^{-1}}
QQ=Equilibrium constant of the reaction
Ecell{{E}_{cell}}=Cell Potential
Eocell{{E}^{o}}_{cell}=Standard cell potential
Here, we don’t have the value of Q. So, we will need to find that first.
We know that cell reaction is Ag+AgA{{g}^{+}}\to Ag
So, Equilibrium constant Q=[AgAg+]Q=\left[ \dfrac{Ag}{A{{g}^{+}}} \right]………………………..(2)
We can find their value from Ksp{{K}_{sp}}(Solubility Product).
For AgI,
Solubility product Ksp=[Ag+][I]{{K}_{sp}}=\left[ A{{g}^{+}} \right]\left[ {{I}^{-}} \right]……..(3)
But As AgIAg++IAgI\to A{{g}^{+}}+{{I}^{-}}, concentration of Ag+A{{g}^{+}}andI{{I}^{-}} will be same, So equation (3) can be re-written as
Ksp=[Ag+]2{{K}_{sp}}={{\left[ A{{g}^{+}} \right]}^{2}}…………(4)
or Ksp=[I]2{{K}_{sp}}={{\left[ {{I}^{-}} \right]}^{2}} but we require Ag+A{{g}^{+}}, So we will use former equation.
Putting available values in the Equation (4),
8.7×1017=[Ag+]28.7\times {{10}^{-17}}={{\left[ A{{g}^{+}} \right]}^{2}}
So, we can write that
[Ag+]=8.7×1017\left[ A{{g}^{+}} \right]=\sqrt{8.7\times {{10}^{-17}}}
Thus,
[Ag+]=9.32×109M\left[ A{{g}^{+}} \right]=9.32\times {{10}^{-9}}M
Now put this value of concentration in equation (2),
Q=[Ag9.32×109]Q=\left[ \dfrac{Ag}{9.32\times {{10}^{-9}}} \right]As Ag is metallic we will take its concentration as 1. So,
Q=[19.32×109]Q=\left[ \dfrac{1}{9.32\times {{10}^{-9}}} \right]………….(5)
Put equation (5) and other constants in equation (1) so will get
Ecell=0.7998.314×29896500ln[19.32×109]{{E}_{cell}}=0.799-\dfrac{8.314\times 298}{96500}\ln \left[ \dfrac{1}{9.32\times {{10}^{-9}}} \right]
As Alnx=2.303AlogxA\ln x=2.303A\log x,
Ecell=0.7998.314×298×2.30396500log[19.32×109]{{E}_{cell}}=0.799-\dfrac{8.314\times 298\times 2.303}{96500}\log \left[ \dfrac{1}{9.32\times {{10}^{-9}}} \right]
So, we can write that
Ecell=0.7990.05911log[1.072×109]{{E}_{cell}}=0.799-\dfrac{0.0591}{1}\log \left[ 1.072\times {{10}^{9}} \right]
Thus, we will get
Ecell=0.7990.474{{E}_{cell}}=0.799-0.474
Therefore,
EAg+/Ag=0.325volt{{E}_{A{{g}^{+}}/Ag}}=0.325volt
Now, we will find the standard reduction potential of I/AgI/Ag{{I}^{-}}/AgI/Ag.
For I/AgI/Ag{{I}^{-}}/AgI/Ag electrode, cell reactions are as below.
At Anode : AgAg++eAg\to A{{g}^{+}}+{{e}^{-}}
At Cathode : AgI+eAg+IAgI+{{e}^{-}}\to Ag+{{I}^{-}}
Cell reaction : AgIAg++IAgI\to A{{g}^{+}}+{{I}^{-}}
Now Applying Nernst equation and applying all the available values, we get
Ecell=Eocell0.0591nlog[Ag+][I]{{E}_{cell}}={{E}^{o}}_{cell}-\dfrac{0.0591}{n}\log \left[ A{{g}^{+}} \right]\left[ {{I}^{-}} \right]
But at equilibrium Ecell{{E}_{cell}}=0
So,
0=Eocell0.05911log[8.7×1017]0={{E}^{o}}_{cell}-\dfrac{0.0591}{1}\log \left[ 8.7\times {{10}^{-17}} \right]
E0cell=0.95volt{{E}^{0}}_{cell}=-0.95volt
Now, we know that
E0cell=E0cathode+E0anode{{E}^{0}}_{cell}={{E}^{0}}_{cathode}+{{E}^{0}}_{anode}
0.95=0.799+EoAg/AgI/I-0.95=-0.799+{{E}^{o}}_{Ag/AgI/{{I}^{-}}}
EoAg/AgI/I=0.151volt{{E}^{o}}_{Ag/AgI/{{I}^{-}}}=-0.151volt
So, potential of the Ag+/AgA{{g}^{+}}/Ag in a saturated solution of AgI is EAg+/Ag=0.325volt{{E}_{A{{g}^{+}}/Ag}}=0.325volt.
And Standard potential for I/AgI/Ag{{I}^{-}}/AgI/Ag electrode is EoAg/AgI/I=0.151volt{{E}^{o}}_{Ag/AgI/{{I}^{-}}}=-0.151volt.

Note: Do not forget to write the true value of the number of electrons involved in the reaction as it often leads to errors when more than one electron are involved in the reaction. Note that in the equilibrium constant, the concentration of Solid metallic atom is considered 1.0