Solveeit Logo

Question

Question: The standard enthalpy change for the following reaction is \(436.4\)kJ \({{\text{H}}_{\text{2}}}{\...

The standard enthalpy change for the following reaction is 436.4436.4kJ
H2(g)H(g) + H(g){{\text{H}}_{\text{2}}}{\text{(g)}}\,\, \to \,{\text{H(g)}}\,{\text{ + }}\,{\text{H(g)}}
What is the \DeltafH0{{\text{\Delta }}_{\text{f}}}{{\text{H}}^0}of atomic hydrogen (H)
A. 872.8872.8 kJ/mol
B. 218.2218.2 kJ/mol
C. 218.2 - 218.2 kJ/mol
D. 436.9 - 436.9 kJ/mol

Explanation

Solution

Standard enthalpy change of a reaction is determined by subtracting the standard enthalpy change for the formation of reactants from the standard enthalpy change for the formation of products. If the standard enthalpy change for the reaction is known we can determine the standard enthalpy for reactant or product.

Formula used: ΔH=ΔfH(products)ΔfH(reactants)\Delta {\text{H}} = \,\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{products)}}} \, - \,\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{reactants)}}}

Complete step-by-step answer:
The formula to determine the standard enthalpy change for a reaction as follows:

ΔH=ΔfH(products)ΔfH(reactants)\Delta {\text{H}} = \,\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{products)}}} \, - \,\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{reactants)}}}

Where,
ΔfH(products)\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{products)}}} \,is the summation of enthalpy of products

ΔfH(reactants)\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{reactants)}}} is the summation of enthalpy of products

We will use the given standard enthalpy change for reaction to determine the standard enthalpy of the product as follows:

The standard enthalpy of formation of an element in its natural state is zero.

For the given reactionΔH\Delta {\text{H}}formula can be written as follows:

ΔH=[2×ΔfH(H)][1×ΔfH(H2)]\Delta {\text{H}} = \,\left[ {2\, \times {\Delta _{\text{f}}}{\text{H}}\,({\text{H)}}} \right] - \left[ {1\,\, \times {\Delta _{\text{f}}}{\text{H}}\,({{\text{H}}_{\text{2}}}{\text{)}}} \right]

On substituting 436.4436.4for ΔH\Delta {\text{H}}and 0 forΔfH{\Delta _{\text{f}}}{\text{H}}of H2{{\text{H}}_{\text{2}}}.

436.4=[2×ΔfH(H)][1×ΔfH(0)]\Rightarrow 436.4 = \,\left[ {2\, \times {\Delta _{\text{f}}}{\text{H}}\,({\text{H)}}} \right] - \left[ {1\,\, \times {\Delta _{\text{f}}}{\text{H}}\,({\text{0)}}} \right]

436.4=2×ΔfH(H)\Rightarrow 436.4 = \,2\, \times {\Delta _{\text{f}}}{\text{H}}\,({\text{H}})
ΔfH(H)=436.42\Rightarrow {\Delta _{\text{f}}}{\text{H}}\,({\text{H}}) = \,\dfrac{{436.4}}{2}
ΔfH(H)=218.2\Rightarrow {\Delta _{\text{f}}}{\text{H}}\,({\text{H}}) = \,218.2
So, the ΔfH0{{{\Delta }}_{\text{f}}}{{\text{H}}^0}of atomic hydrogen (H) is218.2218.2 KJ/mole.

Therefore, option (B) 218.2218.2 KJ/mole is correct.

Note: To determine the change in enthalpy of reaction a balanced chemical equation is necessary. Standard enthalpy of formation is measured in kJ/mol. Oxygen is found in a gaseous state, carbon is in a solid-state. So, there is no change in enthalpy during the formation of solid carbon or gaseous oxygen. Standard enthalpy of formation is also different in different phases. The natural form of carbon is graphite so, its standard enthalpy of formation is zero but the standard enthalpy of formation of diamond is not zero.