Solveeit Logo

Question

Question: The standard enthalples of formation of $CO_2(g)$, $H_2O(l)$ and Isoprene(g) are -400 kJ/mol, -300 k...

The standard enthalples of formation of CO2(g)CO_2(g), H2O(l)H_2O(l) and Isoprene(g) are -400 kJ/mol, -300 kJ/mol and 10 kJ/mol. The standard enthalpy of combustion of Isoprene (C5H8C_5H_8) at 25°C Is (-t) x 10410^4 J. The value of (t10\frac{t}{10}) Is [Round off to the nearest Integer]

Answer

32

Explanation

Solution

The balanced combustion equation for Isoprene (C5H8C_5H_8) is: C5H8(g)+7O2(g)5CO2(g)+4H2O(l)C_5H_8(g) + 7O_2(g) \rightarrow 5CO_2(g) + 4H_2O(l)

The standard enthalpy of combustion (ΔHc\Delta H_c^\circ) is calculated as: ΔHc=νpΔHf(products)νrΔHf(reactants)\Delta H_c^\circ = \sum \nu_p \Delta H_f^\circ(\text{products}) - \sum \nu_r \Delta H_f^\circ(\text{reactants})

Given: ΔHf(CO2(g))=400\Delta H_f^\circ(CO_2(g)) = -400 kJ/mol ΔHf(H2O(l))=300\Delta H_f^\circ(H_2O(l)) = -300 kJ/mol ΔHf(C5H8(g))=10\Delta H_f^\circ(C_5H_8(g)) = 10 kJ/mol ΔHf(O2(g))=0\Delta H_f^\circ(O_2(g)) = 0 kJ/mol

ΔHc=[5×(400)+4×(300)][1×10+7×0]\Delta H_c^\circ = [5 \times (-400) + 4 \times (-300)] - [1 \times 10 + 7 \times 0] ΔHc=[20001200][10]\Delta H_c^\circ = [-2000 - 1200] - [10] ΔHc=320010=3210\Delta H_c^\circ = -3200 - 10 = -3210 kJ/mol

Convert to Joules: ΔHc=3210 kJ/mol×1000 J/kJ=3,210,000\Delta H_c^\circ = -3210 \text{ kJ/mol} \times 1000 \text{ J/kJ} = -3,210,000 J

Given that ΔHc=t×104\Delta H_c^\circ = -t \times 10^4 J: 3,210,000=t×104-3,210,000 = -t \times 10^4 t=3,210,00010,000=321t = \frac{3,210,000}{10,000} = 321

The value of t10\frac{t}{10} is 32110=32.1\frac{321}{10} = 32.1. Rounding to the nearest integer gives 32.