Solveeit Logo

Question

Chemistry Question on Electrochemistry

The standard emf of a galvanic cell involving cell reaction with n=2n=2 is found to be 0.295V0.295\, V at 25C25{}^\circ C .The equilibrium constant of the reaction would be (Given: F=96500Cmol1;F=96500\,C\,mo{{l}^{-1}}; R=8.314JK1mol1R=8.314\,J{{K}^{-1}}mo{{l}^{-1}} )

A

2.0×10112.0\times {{10}^{11}}

B

4.0×10124.0\times {{10}^{12}}

C

1.0×1021.0\times {{10}^{2}}

D

1.0×10101.0\times {{10}^{10}}

Answer

1.0×10101.0\times {{10}^{10}}

Explanation

Solution

By Nernst equation, Ecell =Ecell 2.303RTnFlog10KE_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{2.303 R T}{n F} \log _{10} K At equilibrium Ecell =0E_{\text {cell }}=0 Given that R=8.315JK1mol1\therefore R=8.315 \,JK ^{-1} mol ^{-1} T=25C+273=298KT=25^{\circ} C +273=298\, K F=96500CF=96500\, C and n=2n=2 Ecell=2.303×8.314×2982×96500log10K\therefore E_{ cell }^{\circ}=\frac{2.303 \times 8.314 \times 298}{2 \times 96500} \log _{10} K =0.05912logi0K=\frac{0.0591}{2} \log _{ i 0} K \because Given that Ecell =0.295VE_{\text {cell }}^{\circ}=0.295 \,V 0.295=0.05912log10K\therefore 0.295 =\frac{0.0591}{2} \log _{10} K log10K=0.295×20.0591=10\log _{10} K=\frac{0.295 \times 2}{0.0591} =10 or antilog of log10K= \log _{10} K = antilog 10 10 K=1×1010K =1 \times 10^{10}