Solveeit Logo

Question

Chemistry Question on Electrochemical Cells

The standard EMFEMF of a galvanic cell involving cell reaction with n=2n = 2 is found to be 0.295V0.295\, V at 25C.25^\circ C. th n=2n = 2 is found to be 0.295V0.295\, V at 25C25^{\circ}C. The equilibrium constant of the reaction would be (Given F=96500Cmol1,F = 96500\, C\, mol^{-1}, R=8.314JK1mol1)R=8.314 \, JK^{-1}mol^{-1})

A

2.0×10112.0 \times 10^{11}

B

4.0×10124.0 \times 10^{12}

C

1.0×1021.0 \times 10^{2}

D

1.0×10101.0 \times 10^{10}

Answer

1.0×10101.0 \times 10^{10}

Explanation

Solution

By Nernst equation, Ecell=Ecell02.303RTnFlog10KE_{cell}=E^0_{cell}- \frac {2.303RT}{nF}log _{10} \, K At equilibrium, Ecell=0E_{cell}=0 Given that, \hspace5mm R=8.314 \, JK^{-1}mol^{-1} \hspace5mm T=25^0C+273=298 \, K \hspace5mm F=96500 \, C \, and \, n=2 Ecell0=2.303×8.314×2982×96500log10K\therefore \, \, \, \, \, E^0_{cell}= \frac {2.303\times 8.314 \times 298}{2 \times 96500}log_{10} \, K \hspace5mm = \frac {0.0591}{2}log_{10} \, K Given that Ecell0=0.295VE^0_{cell}=0.295 \, V 0.295=0.05912log10K\therefore \, \, \, \, \, \, \, \, \, 0.295= \frac {0.0591}{2}log_{10} \, K log10K=0.295×20.0591=10\, \, \, \, \, \, log_{10}K= \frac {0.295 \times 2}{0.0591}=10 antiloglog10K=antilog10antilog \, log_{10}K= antilog \, 10 \hspace5mm K=1 \times 10^{10}