Solveeit Logo

Question

Question: The squared length of the intercept made by the line x = h on the pair of tangents drawn from the or...

The squared length of the intercept made by the line x = h on the pair of tangents drawn from the origin to the circle

x2 + y2 + 2gx + 2fy + c = 0 is

A

4ch2( g2c)2\frac { 4 \mathrm { ch } ^ { 2 } } { \left( \mathrm {~g} ^ { 2 } - \mathrm { c } \right) ^ { 2 } } (g2 + f2 – c)

B

4ch2(f2c)2\frac { 4 \mathrm { ch } ^ { 2 } } { \left( \mathrm { f } ^ { 2 } - \mathrm { c } \right) ^ { 2 } } (g2 + f2 – c)

C

4ch2( g2f2)2\frac { 4 \operatorname { ch } ^ { 2 } } { \left( \mathrm {~g} ^ { 2 } - \mathrm { f } ^ { 2 } \right) ^ { 2 } } (g2 + f2 – c)

D

None of these

Answer

4ch2(f2c)2\frac { 4 \mathrm { ch } ^ { 2 } } { \left( \mathrm { f } ^ { 2 } - \mathrm { c } \right) ^ { 2 } } (g2 + f2 – c)

Explanation

Solution

Equation of pair of tangents from (0, 0) is

SS¢ = T2 Ž (x2 + y2 + 2gx + 2fy + c)

c = (gx + fy + c)2 ... (i)

The intersection points of the above pair with x = h is given by

(gh + fy + c)2 = (h2 + y2 + 2gh + 2fy + c) c

Ž (f2 – c) y2 + 2fghy + h2 (g2 – c) = 0

If its roots are y1 and y2, then length of intercept

AB2 = |y1 – y2|2 = (y1 + y2)2 – 4y1y2

= (2fghf2c)2\left( \frac { 2 \mathrm { fgh } } { \mathrm { f } ^ { 2 } - \mathrm { c } } \right) ^ { 2 } – 4 = (g2 + f2 – c)