Solveeit Logo

Question

Question: The spheres\(\mathbf { r } ^ { 2 } + 2 \mathbf { u } _ { 1 } \cdot \mathbf { r } + 2 d _ { 1 } = 0\)...

The spheresr2+2u1r+2d1=0\mathbf { r } ^ { 2 } + 2 \mathbf { u } _ { 1 } \cdot \mathbf { r } + 2 d _ { 1 } = 0 and r2+2u2r+2d2=0\mathbf { r } ^ { 2 } + 2 \mathbf { u } _ { 2 } \cdot \mathbf { r } + 2 d _ { 2 } = 0 cut orthogonally, if

A
B

u1+u2=0\mathbf { u } _ { 1 } + \mathbf { u } _ { 2 } = 0

C

u1u2=d1+d2\mathbf { u } _ { 1 } \cdot \mathbf { u } _ { 2 } = d _ { 1 } + d _ { 2 }

D

(u1u2)(u1+u2)=d12+d22\left( \mathbf { u } _ { 1 } - \mathbf { u } _ { 2 } \right) \cdot \left( \mathbf { u } _ { 1 } + \mathbf { u } _ { 2 } \right) = d _ { 1 } ^ { 2 } + d _ { 2 } ^ { 2 }

Answer

u1u2=d1+d2\mathbf { u } _ { 1 } \cdot \mathbf { u } _ { 2 } = d _ { 1 } + d _ { 2 }

Explanation

Solution

It is obvious.