Solveeit Logo

Question

Physics Question on Electromagnetic waves

The speed of a wave on a string is 150ms1150\, ms^{-1} when the tension is 120N120\, N. The percentage increase in the tension in order to raise the wave speed by 20%20\% is

A

0.44

B

0.4

C

0.2

D

0.1

Answer

0.44

Explanation

Solution

Speed of wave on a string
v=Tmv= \sqrt{\frac{T}{m}}
or vTv \propto \sqrt T
v1v2=T1T2\therefore \frac{v_1}{v_2}= \sqrt{\frac{T_1}{T_2}}
or T1T2=(v1v2)2\frac{T_1}{T_2}=\bigg(\frac{v_1}{v_2}\bigg)^2
or T2T1T1=v22v12v12 \frac{T_2 - T_1}{T_1}=\frac{v_2^2 - v_1^2}{v_1^2} ...(i)
Given, T1=120mT_1 = 120\, m and v1=150ms1v_1 = 150\, ms^{-1}
v2=v1+20100v1=120100v1=65v1=65×150v_2 = v_1 +\frac{20}{100}v_1=\frac{120}{100}v_1 = \frac{6}{5} v_1 = \frac{6}{5} \times 150
=180ms1= 180\, ms^{-1}
Substituting the values in E (i), we get
T2T1T1=(180)2(150)2(150)2\frac{T_2 - T_1}{T_1}=\frac{(180)^2 - (150)^2}{(150)^2}
=30×330150×150=0.44=\frac{30 \times 330 }{150 \times150}=0.44
Percent increase in tension
=T2T1T1×100= \frac{T_2 - T_1}{T_1} \times 100
=0.44×100=44%= 0.44 \times 100 = 44\%