Solveeit Logo

Question

Physics Question on rotational motion

The speed of a particle changes from 5ms1\sqrt{5} \,ms^{- 1} to 25  ms12 \sqrt{5} \; ms^{-1} in a time If the magnitude of change in its velocity is 5  ms15 \; ms^{-1}, the angle between the initial and final velocities of the particle is

A

3030^{\circ}

B

4545^{\circ}

C

6060^{\circ}

D

9090^{\circ}

Answer

9090^{\circ}

Explanation

Solution

Given, vi=5ms1,vf=25ms1v_{i}=\sqrt{5} ms ^{-1}, v_{f}=2 \sqrt{5} ms ^{-1} and Δv=5ms1\Delta v=5 \,ms ^{-1} Since, both viv_{i} and vfv_{f} are extreme speeds, i.e. at t=0t=0 and t=tt=t. So, they can be considered as magnitude of the velocities at time, t=0t=0 and t=tt=t. As we know that R2=A2+B2+2ABcosθR^{2}=A^{2}+B^{2}+2 A B\, \cos\, \theta Hence, the angle between the velocities, cosθ=Δv2vi2vf22vivf\cos \,\theta=\frac{\Delta v^{2}-v_{i}^{2}-v_{f}^{2}}{2 v_{i} v_{f}} Putting the given values, we get cosθ=(5)2(5)2(25)22(5)(5)\cos\, \theta=\frac{(5)^{2}-(\sqrt{5})^{2}-(2 \sqrt{5})^{2}}{2(\sqrt{5})(\sqrt{5})} cosθ=2552010\Rightarrow \cos\, \theta=\frac{25-5-20}{10} =010=0=\frac{0}{10}=0 θ=90\Rightarrow \theta=90^{\circ}