Solveeit Logo

Question

Question: The specific gravity of commercial sulphuric acid is \(1.8\) and it is \(98%\) pure. The volume of t...

The specific gravity of commercial sulphuric acid is 1.81.8 and it is 9898% pure. The volume of this acid required for preparing 7.2 litres7.2\text{ }litres of decinormal sulphuric acid is:
A.10ml10ml
B.18ml18ml
C.72ml72ml
D.4ml4ml

Explanation

Solution

Normality (N) is outlined because the range of gram equivalents of a matter gift per l of the answer. It’s given as:
Normality=weight of solute (in grams)Equivalent weightNormality=\dfrac{weight\text{ }of\text{ }solute\text{ }\left( in\text{ }grams \right)}{Equivalent\text{ }weight}
If normality of one answer is given, that of alternative will be calculated mistreatment normality equation that is given as;
N1V1=N2V2{{N}_{1}}{{V}_{1}}={{N}_{2}}{{V}_{2}}
Specific gravity is the ratio of the density of the given substance to the density of water, Density of water is 1gmL11gm{{L}^{-1}}

Complete step-by-step answer: To find normality of a 9898% solution of given sulphuric acid, H2SO4{{H}_{2}}S{{O}_{4}}
Given molar mass of the H2SO4=98grams{{H}_{2}}S{{O}_{4}}=98grams
Therefore N2{{N}_{2}}can be given as N2=110{{N}_{2}}=\dfrac{1}{10}
Thus, M2=N22=(110)2=110×12=120{{M}_{2}}=\dfrac{{{N}_{2}}}{2}=\dfrac{\left( \dfrac{1}{10} \right)}{2}=\dfrac{1}{10}\times \dfrac{1}{2}=\dfrac{1}{20}
V2=7.2 {{V}_{2}}=7.2~litre 9898% pure 98grams98gramsH2SO4{{H}_{2}}S{{O}_{4}} in 100g100g solution,
Similarly for M1{{M}_{1}} it is given by
M1=9898×1000V.................(here 1000 stands for 1 litre per volume)...........(i){{M}_{1}}=\dfrac{98}{98}\times \dfrac{1000}{V}.................(here\text{ }1000\text{ }stands\text{ }for\text{ }1\text{ }litre\text{ }per\text{ }volume)...........(i)
Now, 1ml1.8gm1ml-1.8gmcan be given by;
100gm=11.8×100ml..............................(ii)100gm=\dfrac{1}{1.8}\times 100ml..............................\left( ii \right)
Therefore, from (i) & (ii)\left( i \right)\text{ }\And \text{ }\left( ii \right) we get M1{{M}_{1}} as;
M1=9898×1000100×1.8{{M}_{1}}=\dfrac{98}{98}\times \dfrac{1000}{100}\times 1.8
M1=11×101×1.8{{M}_{1}}=\dfrac{1}{1}\times \dfrac{10}{1}\times 1.8
M1=1×10×1.8{{M}_{1}}=1\times 10\times 1.8
M1=18ml\Rightarrow {{M}_{1}}=18ml

Therefore, Option B is correct answer.

Note: Convert all the units for volume in either ll or mlml and use an equivalent unit throughout the calculation to avoid errors. Note and carefully follow steps to calculate volume of the solution from the particular gravity given.