Solveeit Logo

Question

Physics Question on Capacitors and Capacitance

The space between the plates of a parallel plate capacitor is filled with a 'dielectric' whose 'dielectric constant' varies with distance as per the relation : K(x)=K0+λx(λ=aconstant)K\left(x\right)=K_{0}+\lambda x\left(\lambda=a\,\text{constant}\right) The capacitance CC, of this capacitor, would be related to its 'vacuum' capacitance CoC_o as per the relation :

A

C=λdn(1+Koλd)CoC=\frac{\lambda d}{\ell n\left(1+K_{o}\lambda d\right)}C_{o}

B

C=λd.n(1+Koλd)CoC=\frac{\lambda }{d. \ell n\left(1+K_{o}\lambda d\right)}C_{o}

C

C=λdn(1+λd/Ko)CoC=\frac{\lambda d}{\ell n\left(1+\lambda d/K_{o}\right)}C_{o}

D

C=λdd.n(1+Ko/λd)CoC=\frac{\lambda d}{d. \ell n\left(1+K_{o}/\lambda d\right)}C_{o}

Answer

C=λdn(1+λd/Ko)CoC=\frac{\lambda d}{\ell n\left(1+\lambda d/K_{o}\right)}C_{o}

Explanation

Solution

dC=(K0+λx)Adxd _{ C }=\frac{\left( K _{0}+\lambda_{ x }\right) A }{ dx } 1dC=0ϕdxA(K0+λx)\int \frac{1}{ d _{ C }}=\int\limits_{0}^{\phi} \frac{ dx }{ A \cdot\left( K _{0}+\lambda x \right)} C0=ε0Ad1λK0K0+λddtAtC _{0}=\frac{\varepsilon_{0} A }{ d } \frac{1}{\lambda} \int\limits_{ K _{0}}^{ K _{0}+\lambda d } \frac{ dt }{ At } K0+λx=tλdx=dtK _{0}+\lambda x = t\,\,\,\, \lambda d x = dt C=1λAln[K0+λdK0]C=\frac{1}{\lambda A } \ln \left[\frac{ K _{0}+\lambda d }{ K _{0}}\right]