Solveeit Logo

Question

Mathematics Question on integral

The solutions of x+sin5x=sin3xx+\sin \,5x=\sin 3x in (0,π2)\left( 0,\frac{\pi }{2} \right) are

A

π4,π10\frac{\pi }{4},\frac{\pi }{10}

B

π6,π3\frac{\pi }{6},\frac{\pi }{3}

C

π4,π2\frac{\pi }{4},\frac{\pi }{2}

D

π8,π16\frac{\pi }{8},\frac{\pi }{16}

Answer

π6,π3\frac{\pi }{6},\frac{\pi }{3}

Explanation

Solution

sinx+sin5x=sin3x\sin \,\,x+\,\sin \,5x=\,\sin \,3x \Rightarrow 2sin3xcos2x=sin3x2\,\,\sin \,3x\,cos\,2x\,=\sin \,3x \Rightarrow sin3x(2cos2x1)=0\sin 3x(2\cos 2x-1)=0 \Rightarrow sin3x=0\sin \,\,3x=0 or 2cos2x1=02\,\cos \,2x-1=0 if sin3x=0\sin \,\,3x=0 \Rightarrow 3x=0,3x=0, or π\pi \Rightarrow x=0x=0 or x=π3x=\frac{\pi }{3} And if 2cos2x1=02\,\,\cos \,2x-1=0 \Rightarrow cos2x=12=cosπ3\cos \,\,2x=\frac{1}{2}\,=\,\cos \,\frac{\pi }{3} \Rightarrow 2x=π3x=π62x=\frac{\pi }{3}\Rightarrow x=\frac{\pi }{6} \therefore Solutions in (0,π2)\left( 0,\frac{\pi }{2} \right) are π3,π6.\frac{\pi }{3},\frac{\pi }{6}.