Solveeit Logo

Question

Question: The solution to the differential equation \(\frac{dy}{dx} = \frac{x + y}{x}\) satisfying the conditi...

The solution to the differential equation dydx=x+yx\frac{dy}{dx} = \frac{x + y}{x} satisfying the condition y(1) = 1 is-

A

y = x lnx + x^2

B

y = xe^(x–1)

C

y = x lnx + x

D

y = lnx + x

Answer

y = x lnx + x

Explanation

Solution

dydx\frac{dy}{dx}= 1 + yx\frac{y}{x} yx\frac{y}{x}= v

v + x dvdx\frac{dv}{dx}= 1 + v Ž v = log x + c by y(1) = 1 Ž yx\frac{y}{x}= log

x + c Ž 1 = c so yx\frac{y}{x} = log x + 1