Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

The solution set of the inequation x2+6x7x+4<0\frac {x^2+6x-7}{|x+4|}<0 is

A

(7,1)(-7,1)

B

(7,4)(-7,-4)

C

(7,4)(4,1)(-7, - 4) \cup (- 4, 1)

D

(7,4)(4,1)(-7, - 4) \cup (4, 1)

Answer

(7,4)(4,1)(-7, - 4) \cup (- 4, 1)

Explanation

Solution

x2+6x7x+4<0\frac{x^{2}+6x-7}{\left|x+4\right|}<0
We know that x+4>0|x + 4| >\, 0
x2+6x7<0\Rightarrow x^{2} + 6x - 7 < \,0 and x4x \ne- 4
(x+7)(x1)<0\Rightarrow \left(x + 7\right)\left(x - 1\right) < \,0 and x4x \ne- 4
\Rightarrow x\,\in\,\left(-7,1\right)-\left\\{-4\right\\}
x(7,4)(4,1)\Rightarrow x\,\in\,\left(-7,-4\right)\cup\left(-4, 1\right)