Solveeit Logo

Question

Mathematics Question on Determinants

The solution set of the inequality 9x3x+115<2.9x3x\left|9^{x}-3^{x+1}-15\right|< 2.9^{x}-3^{x} is

A

(,1)\left(-\infty, 1\right)

B

(1,)\left(1, \infty\right)

C

(,1](-\infty, 1]

D

None of these

Answer

(1,)\left(1, \infty\right)

Explanation

Solution

Let 3x=y3^x=y, then the inequality is y23y15<2y2y...(i)| y^2 -3y-15| < 2y^2-y\,...(i) The inequality holds if 2y2y>0y<02y^{2}-y>0 \Rightarrow y < 0 or y>12y > \frac{1}{2} y=3x0y>12\because y=3^{x} \le0 \Rightarrow y >\frac{1}{2} Now the inequality on solving, (2y2y)<y23y15<2y2y-\left(2y^{2}-y\right) < y^{2}-3y-15 < 2y^{2}-y 3y24y15>0\Rightarrow 3y^{2}-4y-15>0 and y2+2y+15>0y^{2}+2y+15>0 Solution of first inequality 3y24y15>03y^{2}-4y-15>0 is y3y3 Solution of second inequality y2+2y+15>0y^{2}+2y+15>0 is yRy\in R The common solution is y>33x>xx>1x(1,)y>3 \Rightarrow 3^{x}> x \Rightarrow x>1 \Rightarrow x\in\left(1, \infty\right)