Solveeit Logo

Question

Mathematics Question on Determinants

The solution set of the inequality 5x+2>(125)1/x { 5^{x + 2} } > \left( \frac{1}{25} \right)^{ {1 /x}} is

A

(-2, 0)

B

(-2, 2)

C

(-5, 5)

D

(0, \infty)

Answer

(0, \infty)

Explanation

Solution

We have 5x+2>(125)1/x5x+2>52xx+2>\-2x { 5^{x + 2} } > \bigg( \frac{1}{25} \bigg)^{ {1 /x}} \Rightarrow { 5^{x + 2}} > 5^{- \frac{2}{x}} \Rightarrow \, {x + 2 > \- \frac{2}{x}} [base5>1] { [ \because \, base \, 5 > 1]} x+2+2x>0x2+2x+2x>01x>0 {\Rightarrow x + 2 + \frac{2}{x} > 0 \Rightarrow \frac{x^{2} + 2x + 2}{x}> 0 \Rightarrow \frac{1}{x} > 0 } [x2+2x+2>0xR][\because \: { x^2 + 2x + 2 > 0 \, \forall \, x \, \in R }] x>0orx(0,) { \Rightarrow \, x > 0 \: or \: x \, \in ( 0, \infty)}