Solveeit Logo

Question

Mathematics Question on Inequalities

The solution set of the inequality |3x| ≥ |6 − 3x| is:

A

(−∞, 1]

B

[1, ∞)

C

(−∞, 1) ∪ (1,∞)

D

(−∞, −1) ∪ (−1,∞)

Answer

[1, ∞)

Explanation

Solution

The inequality 3x63x|3x| \geq |6 - 3x| involves absolute values, so split into cases:

Case 1: 3x63x3x \geq 6 - 3x:

3x+3x6    6x6    x13x + 3x \geq 6 \implies 6x \geq 6 \implies x \geq 1.

Case 2: 3x(63x)3x \leq -(6 - 3x):

3x6+3x    063x \leq -6 + 3x \implies 0 \leq -6,

which is not possible.

Thus, the solution is x1x \geq 1, or [1,)[1, \infty).