Solveeit Logo

Question

Question: The solution set of \(\ln (5 - 7x) \leqslant 1\) is given by, A. \(\left[ {\dfrac{{5 - e}}{7},\dfr...

The solution set of ln(57x)1\ln (5 - 7x) \leqslant 1 is given by,
A. [5e7,57)\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)
B. [2e3,23)\left[ {\dfrac{{2 - e}}{3},\dfrac{2}{3}} \right)
C. (10,7)( - 10,7)
D. All real numbers

Explanation

Solution

The set containing all the solutions of an equation is called the solution set for that equation. We can find the interval of xx by solving the inequality.
Use the property of logarithm;
\Rightarrow eln(x)=x{e^{\ln (x)}} = x
Logarithmic function and exponential function are the inverse function.

Complete step-by-step answer:
We are asked to find the solution set of ln(57x)1\ln (5 - 7x) \leqslant 1.
Remove the logarithm by taking exponential both sides of the inequality ln(57x)1\ln (5 - 7x) \leqslant 1.
\Rightarrow (57x)e(5 - 7x) \leqslant e
Logarithmic function and exponential function are the inverse function.
\Rightarrow 5e7x5 - e \leqslant 7x
Divide both the sides by 77.
\Rightarrow$$$\dfrac{{5 - e}}{7} \leqslant \dfrac{{7x}}{7}$$ \Rightarrow$$$ \Rightarrow \dfrac{{5 - e}}{7} \leqslant x \ldots (1) All the solutions of $x$ greater than\dfrac{{5 - e}}{7}$$.
Logarithmic function is defined for positive values.
\Rightarrow 57x>05 - 7x > 0
\Rightarrow 5>7x5 > 7x
\Rightarrow 57>x(2)\dfrac{5}{7} > x \ldots (2)
From the inequalities (1)(1) and (2)(2).
\Rightarrow 5e7<x<57\dfrac{{5 - e}}{7} < x < \dfrac{5}{7}
The solution set of ln(57x)1\ln (5 - 7x) \leqslant 1 is [5e7,57)\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right).

Correct Answer: [5e7,57)\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)

Note:
The logarithmic function is defined for positive values.
Use the property of logarithm;
\Rightarrow eln(x)=x{e^{\ln (x)}} = x