Solveeit Logo

Question

Mathematics Question on Determinants

The solution set of inequality 2xx291x+2\frac{2x}{x^2 - 9} \leq \frac{1}{x + 2 } is

A

(2)(3,)(-\infty - 2) \cup (3, \infty)

B

(,3)(2,3)(-\infty , - 3) \cup (-2 , 3)

C

(3,0](3,)(-3, 0 ] \cup (3, \infty)

D

none of these

Answer

(,3)(2,3)(-\infty , - 3) \cup (-2 , 3)

Explanation

Solution

We have x290x^2 - 9 \neq 0 and x+20x + 2 \neq 0 and 2xx291x+202x2+4xx2+9(x+2)(x29)0\frac{2x}{x^{2}-9}-\frac{1}{x+2}\le0 \Rightarrow \frac{2x^{2}+4x-x^{2}+9}{\left(x+2\right)\left(x^{2}-9\right)}\le0 x2+4x+9(x+2)(x29)0(x+2)(x+3)(x3)<0\Rightarrow \frac{x^{2}+4x+9}{\left(x+2\right)\left(x^{2}-9\right)} \le0\Rightarrow \left(x+2\right)\left(x+3\right)\left(x-3\right)<0 (x2+4x+9>0xR) \left( \because x^{2}+4x + 9>0 \, \forall x \, \in R\right) From the wavy curve shown, we have x(,2)(2,3)x \in ( -\infty , - 2) \cup ( - 2 , 3)