Solveeit Logo

Question

Question: The solution of (y + x + 5)dy = (y – x + 1) dx is...

The solution of (y + x + 5)dy = (y – x + 1) dx is

A

log ((y + 3)2 + (x + 2)2) + tan–1y+3x+2\frac{y + 3}{x + 2} = C

B

log ((y + 3)2 + (x – 2)2) + tan–1y3x2\frac{y - 3}{x - 2} = C

C

log ((y + 3)2 + (x + 2)2) + 2 tan–1y+3x+2\frac{y + 3}{x + 2} = C

D

log ((y + 3)2 + (x + 2)2) – 2 tan–1y+3x+2\frac{y + 3}{x + 2} = C

Answer

log ((y + 3)2 + (x + 2)2) + 2 tan–1y+3x+2\frac{y + 3}{x + 2} = C

Explanation

Solution

The intersection of y – x + 1 = 0 and y + x + 5 = 0 is

(– 2, –3). Put x = X – 2, y = Y – 3. The given equation reduces to dYdX\frac{dY}{dX} = YXY+X\frac{Y - X}{Y + X}. This is a homogeneous equation, so puttig Y = uX, we get

XdυdX\frac{d\upsilon}{dX} = υ2+1υ+1- \frac{\upsilon^{2} + 1}{\upsilon + 1}

Ž (υυ2+11υ2+1)\left( - \frac{\upsilon}{\upsilon^{2} + 1} - \frac{1}{\upsilon^{2} + 1} \right)du = dXX\frac{dX}{X}

Ž –12\frac{1}{2}log (u2 + 1) – tan–1 u = log | X | + C

Ž log (Y2 + X2) + 2 tan–1 YX\frac{Y}{X} = C

Ž log ((y + 3)2 + (x + 2)2) + 2 tan–1 y+3x+2\frac{y + 3}{x + 2} = C