Solveeit Logo

Question

Question: The solution of (y + x + 5) dy = (y – x + 1) dx is –...

The solution of (y + x + 5) dy = (y – x + 1) dx is –

A

log ((y + 3)2 + (x + 2)2) + tan–1y+3x+2\frac{y + 3}{x + 2} = C

B

log ((y + 3)2 + (x – 2)2) + tan–1y3x2\frac{y–3}{x–2} = C

C

log ((y + 3)2 + (x + 2)2) + 2 tan–1y+3x+2\frac{y + 3}{x + 2} = C

D

log ((y + 3)2 + (x + 2)2) – 2 tan–1y+3x+2\frac{y + 3}{x + 2} = C

Answer

log ((y + 3)2 + (x + 2)2) + 2 tan–1y+3x+2\frac{y + 3}{x + 2} = C

Explanation

Solution

The intersection of y – x + 1 = 0 and

y + x + 5 = 0 is (–2, – 3). Put x = X – 2,

y = Y – 3. The given equation reduces to

dYdX\frac{dY}{dX} = YXY+X\frac{Y - X}{Y + X}. This is a homogeneous equation, so putting, so putting Y = vX, we get

X = – v2+1v+1\frac{v^{2} + 1}{v + 1} Ž (vv2+11v2+1)\left( \frac{- v}{v^{2} + 1} - \frac{1}{v^{2} + 1} \right) dv = dXX\frac{dX}{X}

Ž – 12\frac{1}{2}log (v2 + 1) – tan–1 v = log |X| + Const

Ž log (Y2 + X2) + 2 tan–1 YX\frac{Y}{X} = Const

Ž log ((y + 3)2 + (x + 2)2) + 2 tan–1 y+3x+2\frac{y + 3}{x + 2} = C