Solveeit Logo

Question

Mathematics Question on integral

The solution of xdyydx+x2exdx=0x \, dy - y \, dx + x^2 \, e^x \, dx = 0 is :

A

yx+ex=c\frac{y}{x} + e^x = c

B

xy+ex=c\frac{x}{y} + e^x = c

C

x+ey=cx + e^y = c

D

y+ex=cy + e^x = c

Answer

yx+ex=c\frac{y}{x} + e^x = c

Explanation

Solution

The diff. e can be written as: dydxyx=xex\frac{dy}{dx} - \frac{y}{x} = - xe^{x} I.f.=e1xdx=elogx=1x I.f. =e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x} Thus, the solution is; y1x=xex.1xdx+cy \frac{1}{x} = \int -xe^{x}. \frac{1}{x} dx +c yx=ex+c \Rightarrow \frac{y}{x} = - e^{x} +c yx+ex=c\Rightarrow \frac{y}{x} + e^{x} = c