Solveeit Logo

Question

Question: The solution of trigonometric equation \[{\cos ^4}x + {\sin ^4}x = 2\cos (2x + \pi )\cos (2x - \pi )...

The solution of trigonometric equation cos4x+sin4x=2cos(2x+π)cos(2xπ){\cos ^4}x + {\sin ^4}x = 2\cos (2x + \pi )\cos (2x - \pi ) is
A.x=nπ2±sin1(15)x = \dfrac{{n\pi }}{2} \pm {\sin ^{ - 1}}\left( {\dfrac{1}{5}} \right)
B.x=nπ2+(1)n4sin1(±223)x = \dfrac{{n\pi }}{2} + \dfrac{{{{( - 1)}^n}}}{4}{\sin ^{ - 1}}\left( {\dfrac{{ \pm 2\sqrt 2 }}{3}} \right)
C.x=nπ2±cos1(15)x = \dfrac{{n\pi }}{2} \pm {\cos ^{ - 1}}\left( {\dfrac{1}{5}} \right)
D.x=nπ2(1)n4cos1(15)x = \dfrac{{n\pi }}{2} - \dfrac{{{{( - 1)}^n}}}{4}{\cos ^{ - 1}}\left( {\dfrac{1}{5}} \right)

Explanation

Solution

Hint : A solution of a trigonometric equation is the value of the unknown angle that satisfies the equation . Solving an equation means to find the set of all the values of the unknown angle which satisfies the given equation . Since , the trigonometric functions are periodic therefore , a trigonometric equation has a solution it will have infinitely many solutions .

Complete step-by-step answer :
Given : cos4x+sin4x=2cos(2x+π)cos(2xπ){\cos ^4}x + {\sin ^4}x = 2\cos (2x + \pi )\cos (2x - \pi )
Using the identities of 2cosCcosD=cos(A+B)+cos(AB)2\cos C\cos D = \cos (A + B) + \cos (A - B) , in the LHS of the equation we get ,
cos4x+sin4x=cos(2x+π+2xπ)+cos(2x+π2x+π){\cos ^4}x + {\sin ^4}x = \cos (2x + \pi + 2x - \pi ) + \cos (2x + \pi - 2x + \pi )
On simplifying we get ,
(cos2x)2+(sin2x)2=cos(4x)+cos(2π){({\cos ^2}x)^2} + {({\sin ^2}x)^2} = \cos (4x) + \cos (2\pi )
Now making adjustment on RHS we get
(cos2x)2+(sin2x)2+2sin2xcos2x2sin2xcos2x=2cos(4x)+cos(2π){({\cos ^2}x)^2} + {({\sin ^2}x)^2} + 2{\sin ^2}x{\cos ^2}x - 2{\sin ^2}x{\cos ^2}x = 2\cos (4x) + \cos (2\pi )
on solving we get ,
(cos2x+sin2x)22sin2xcos2x=cos(4x)+cos(2π){({\cos ^2}x + {\sin ^2}x)^2} - 2{\sin ^2}x{\cos ^2}x = \cos (4x) + \cos (2\pi ) ,
using the identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 and cos2π=1\cos 2\pi = 1 in the above equation we get,
12sin2xcos2x=cos(4x)+11 - 2{\sin ^2}x{\cos ^2}x = \cos (4x) + 1
Now using the formula sin2x=2sinxcosx\sin 2x = 2\sin x\cos x , we get
112sin22x=cos(4x)+11 - \dfrac{1}{2}{\sin ^2}2x = \cos (4x) + 1
On solving further we get ,
12sin22x=cos(4x)- \dfrac{1}{2}{\sin ^2}2x = \cos (4x)
Now using the formula cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A on RHS we get
12(1cos4x2)=cos(4x)- \dfrac{1}{2}\left( {\dfrac{{1 - \cos 4x}}{2}} \right) = \cos (4x)
Here we have got cos4x\cos 4xas we have sin22x{\sin ^2}2x in the above equation
1cos4x=4cos(4x)1 - \cos 4x = - 4\cos (4x)
3cos4x=13\cos 4x = - 1 , on solving further we get
cos4x=13\cos 4x = \dfrac{{ - 1}}{3}
2cos22x1=132{\cos ^2}2x - 1 = \dfrac{{ - 1}}{3} , on solving further we get
cos22x=13{\cos ^2}2x = \dfrac{1}{3}
now using the identity of sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 , the value of cos22x{\cos ^2}2x can be represented in terms of sin22x{\sin ^2}2x . Therefore ,
sin22x=1cos22x{\sin ^2}2x = 1 - {\cos ^2}2x
sin22x=113{\sin ^2}2x = 1 - \dfrac{1}{3}
On solving further we get ,
sin22x=313{\sin ^2}2x = \dfrac{{3 - 1}}{3} ,
sin22x=23{\sin ^2}2x = \dfrac{2}{3}
taking square root on both sides we get
sin2x=23\sin 2x = \sqrt {\dfrac{2}{3}}
Now using the general equation for formula for sinθ=sinα\sin \theta = \sin \alpha , we have θ=nπ+(1)nα,nZ\theta = n\pi + {( - 1)^n}\alpha ,n \in Z
Therefore ,
x=nπ2+(1)nsin1(±23),nZx = \dfrac{{n\pi }}{2} + {( - 1)^n}{\sin ^{ - 1}}\left( { \pm \sqrt {\dfrac{2}{3}} } \right),n \in Z
Therefore ,none of the options is the correct answer for the given trigonometric equation .

Note : In the given question it has asked about the trigonometric solution, so the solution of any trigonometric equation is always given in the form of a general solution , which is different for different trigonometric equations . A solution generalized by means of periodicity is known as the general solution.