Question
Question: The solution of the equation \(x^{2}\frac{d^{2}y}{dx^{2}} = \ln x\) when *x* = 1, *y* = 0 and \(\fra...
The solution of the equation x2dx2d2y=lnx when x = 1, y = 0 and dxdy=−1 is
A
21(lnx)2+lnx
B
21(lnx)2−lnx
C
21(lnx)2+lnx
D
−21(lnx)2−lnx
Answer
−21(lnx)2−lnx
Explanation
Solution
We havedx2d2y=x2lnx ⇒ d(dxdy)=x2lnxdx
Integrating, dxdy=∫lnxd(−x1)=−xlnx+∫x21dx=−xlnx−x1+c
⇒ dxdy=−x1+lnx+c
When x = 1, dxdy=−1
∴ – 1 = – 1 + c ⇒ c = 0
∴ dxdy=−x1+lnx ⇒ dy=−x1+lnxdx
⇒ −∫dy=+∫xdx+∫lnx.x1dx ⇒ −y=lnx+21(lnx)2+λ
y = 0 when x = 1
∴ 0=0+02+λ ⇒ λ=0 ⇒ −y=lnx+21(lnx)2
∴ y=−21(lnx)2−lnx