Solveeit Logo

Question

Question: The solution of the equation \(x^{2}\frac{d^{2}y}{dx^{2}} = \ln x\) when *x* = 1, *y* = 0 and \(\fra...

The solution of the equation x2d2ydx2=lnxx^{2}\frac{d^{2}y}{dx^{2}} = \ln x when x = 1, y = 0 and dydx=1\frac{dy}{dx} = - 1 is

A

12(lnx)2+lnx\frac{1}{2}(\ln x)^{2} + \ln x

B

12(lnx)2lnx\frac{1}{2}(\ln x)^{2} - \ln x

C

12(lnx)2+lnx\frac{1}{2}(\ln x)^{2} + \ln x

D

12(lnx)2lnx- \frac{1}{2}(\ln x)^{2} - \ln x

Answer

12(lnx)2lnx- \frac{1}{2}(\ln x)^{2} - \ln x

Explanation

Solution

We haved2ydx2=lnxx2\frac{d^{2}y}{dx^{2}} = \frac{\ln x}{x^{2}}d(dydx)=lnxx2dxd\left( \frac{dy}{dx} \right) = \frac{\ln x}{x^{2}}dx

Integrating, dydx=lnxd(1x)=lnxx+1x2dx=lnxx1x+c\frac{dy}{dx} = \int_{}^{}{\ln x}d\left( - \frac{1}{x} \right) = - \frac{\ln x}{x} + \int_{}^{}{\frac{1}{x^{2}}dx = - \frac{\ln x}{x} - \frac{1}{x} + c}

dydx=1+lnxx+c\frac{dy}{dx} = - \frac{1 + \ln x}{x} + c

When x = 1, dydx=1\frac{dy}{dx} = - 1

∴ – 1 = – 1 + c ⇒ c = 0

dydx=1+lnxx\frac{dy}{dx} = - \frac{1 + \ln x}{x}dy=1+lnxxdxdy = - \frac{1 + \ln x}{x}dx

dy=+dxx+lnx.1xdx- \int_{}^{}{dy} = + \int_{}^{}\frac{dx}{x} + \int_{}^{}{\ln x}.\frac{1}{x}dxy=lnx+12(lnx)2+λ- y = \ln x + \frac{1}{2}(\ln x)^{2} + \lambda

y = 0 when x = 1

0=0+02+λ0 = 0 + 0^{2} + \lambdaλ=0\lambda = 0y=lnx+12(lnx)2- y = \ln x + \frac{1}{2}(\ln x)^{2}

y=12(lnx)2lnxy = - \frac{1}{2}(\ln x)^{2} - \ln x