Solveeit Logo

Question

Question: The solution of the equation \(( x + 1 ) + ( x + 4 ) + ( x + 7 ) + \ldots \ldots \ldots + ( x + 28...

The solution of the equation

(x+1)+(x+4)+(x+7)++(x+28)=155( x + 1 ) + ( x + 4 ) + ( x + 7 ) + \ldots \ldots \ldots + ( x + 28 ) = 155 is.

A

1

B

2

C

3

D

4

Answer

1

Explanation

Solution

We have

Let nn be the number of terms in the A.P. on L.H.S. Then x+28=(x+1)+(n1)3x + 28 = ( x + 1 ) + ( n - 1 ) 3 \Rightarrow n=10n = 10

\therefore (x+1)+(x+4)++(x+28)=155( x + 1 ) + ( x + 4 ) + \ldots \ldots + ( x + 28 ) = 155

\Rightarrow 102[(x+1)+(x+28)]=155\frac { 10 } { 2 } [ ( x + 1 ) + ( x + 28 ) ] = 155 \Rightarrow x=1x = 1.