Solveeit Logo

Question

Question: The solution of the equation \(\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x\) in the in...

The solution of the equation sinx+3sin2x+sin3x=cosx+3cos2x+cos3x\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x in the interval 0x2π0 \leqslant x \leqslant 2\pi are
(a) π3,5π8,2π3 (b) π8,5π8,9π8,13π8 (c) 4π3,9π3,2π3,13π8 (d) π8,5π8,9π3,4π3  (a){\text{ }}\dfrac{\pi }{3},\dfrac{{5\pi }}{8},\dfrac{{2\pi }}{3} \\\ (b){\text{ }}\dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8} \\\ (c){\text{ }}\dfrac{{4\pi }}{3},\dfrac{{9\pi }}{3},\dfrac{{2\pi }}{3},\dfrac{{13\pi }}{8} \\\ (d){\text{ }}\dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{3},\dfrac{{4\pi }}{3} \\\

Explanation

Solution

Hint – In this question we have to find the solution of the given equation, use trigonometric identities like sinC+sinD=2sin(C+D2)cos(CD2)\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) to simplify for the value of x, but keep in mind that the solution is asked to be found only for the interval of 0x2π0 \leqslant x \leqslant 2\pi .

Complete step-by-step answer:
Given equation is
sinx+3sin2x+sin3x=cosx+3cos2x+cos3x\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x
sinx+sin3x+3sin2x=cosx+cos3x+3cos2x\Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x
We have to find out the solution of this equation in the interval0x2π0 \leqslant x \leqslant 2\pi .
Now as we know
sinC+sinD=2sin(C+D2)cos(CD2) cosC+cosD=2cos(C+D2)cos(CD2)  \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\\ \cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\\
So, use this property in the above equation we have,
sinx+sin3x+3sin2x=cosx+cos3x+3cos2x\Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x
2sin(x+3x2)cos(x3x2)+3sin2x=2cos(x+3x2)cos(x3x2)+3cos2x\Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x
Now simplify the above equation we have,
2sin2xcosx+3sin2x=2cos2xcosx+3cos2x\Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x [cos(θ)=cosθ]\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]
Now take common the common terms we have,
sin2x(2cosx+3)=cos2x(2cosx+3)\Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)
(2cosx+3)(sin2xcos2x)=0\Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0………………. (1)
2cosx+3=0\Rightarrow 2\cos x + 3 = 0
cosx=32\Rightarrow \cos x = \dfrac{{ - 3}}{2} (Which is not possible as the value of cosine is always lie between -1 to 1)
Again from equation (1) we have,
(sin2xcos2x)=0\Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0
sin2x=cos2x\Rightarrow \sin 2x = \cos 2x
sin2xcos2x=1\Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1
tan2x=1=tan(nπ+π4)\Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right) (General solution where n = 0, 1, 2, 3, …………………. )
So on comparing
2x=nπ+π4\Rightarrow 2x = n\pi + \dfrac{\pi }{4}
x=nπ2+π8\Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}
Now, we have to find out the value of x in the interval0x2π0 \leqslant x \leqslant 2\pi .
For n = 0
x=π8\Rightarrow x = \dfrac{\pi }{8}.
For n = 1
x=π2+π8=5π8\Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}
For n = 2
x=2π2+π8=9π8\Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}
For n = 3
x=3π2+π8=13π8\Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}
For n = 4
x=4π2+π8=17π8>2π\Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi (So this solution is not considered)
Hence the required solution is x=π8,5π8,9π8,13π8x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}
Hence option (b) is correct.

Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.