Question
Question: The solution of the equation \(\sin ^ { - 1 } \left( \frac { d y } { d x } \right) = x + y\) is...
The solution of the equation sin−1(dxdy)=x+y is
A
tan(x+y)+sec(x+y)=x+c
B
tan(x+y)−sec(x+y)=x+c
C
tan(x+y)+sec(x+y)+x+c=0
D
None of these
Answer
tan(x+y)−sec(x+y)=x+c
Explanation
Solution
Here dxdy=sin(x+y)
Now put x+y=v and dxdy=dxdv−1
Therefore dxdy=sin(x+y)reduces to 1+sinvdv=dx
Now on integrating both the sides, we get
tanv−secv=x+c or tan(x+y)−sec(x+y)=x+c.