Solveeit Logo

Question

Question: The solution of the equation \(\sin ^ { - 1 } \left( \frac { d y } { d x } \right) = x + y\) is...

The solution of the equation sin1(dydx)=x+y\sin ^ { - 1 } \left( \frac { d y } { d x } \right) = x + y is

A

tan(x+y)+sec(x+y)=x+c\tan ( x + y ) + \sec ( x + y ) = x + c

B

tan(x+y)sec(x+y)=x+c\tan ( x + y ) - \sec ( x + y ) = x + c

C

tan(x+y)+sec(x+y)+x+c=0\tan ( x + y ) + \sec ( x + y ) + x + c = 0

D

None of these

Answer

tan(x+y)sec(x+y)=x+c\tan ( x + y ) - \sec ( x + y ) = x + c

Explanation

Solution

Here dydx=sin(x+y)\frac { d y } { d x } = \sin ( x + y )

Now put x+y=vx + y = v and dydx=dvdx1\frac { d y } { d x } = \frac { d v } { d x } - 1

Therefore dydx=sin(x+y)\frac { d y } { d x } = \sin ( x + y )reduces to dv1+sinv=dx\frac { d v } { 1 + \sin v } = d x

Now on integrating both the sides, we get

tanvsecv=x+c\tan v - \sec v = x + c or tan(x+y)sec(x+y)=x+c\tan ( x + y ) - \sec ( x + y ) = x + c.