Question
Question: The solution of the equation \(\mathbf{\cos}^{\mathbf{2}}\mathbf{x}\mathbf{-}\mathbf{2}\mathbf{\cos...
The solution of the equation
cos2x−2cosx=4sinx−sin2x,(0≤x≤π) is
A
π−cot−1(21)
B
π−tan−1(2)
C
π+tan−1(−21)
D
None of these
Answer
π+tan−1(−21)
Explanation
Solution
Given equation is cos2x−2cosx=4sinx−sin2x
⇒cos2x−2cosx=4sinx−2sinxcosx⇒cosx(cosx−2)=2sinx(2−cosx)⇒(cosx−2)(cosx+2sinx)=0⇒cosx+2sinx=0(∵cosx=2)⇒tanx=−21⇒x=nπ+tan−1(−21),n∈IAs
0≤x≤π, therefore x=π+tan−1(−21).