Solveeit Logo

Question

Question: The solution of the equation \(\mathbf{\cos}^{\mathbf{2}}\mathbf{x}\mathbf{-}\mathbf{2}\mathbf{\cos...

The solution of the equation

cos2x2cosx=4sinxsin2x,(0xπ)\mathbf{\cos}^{\mathbf{2}}\mathbf{x}\mathbf{-}\mathbf{2}\mathbf{\cos}\mathbf{x}\mathbf{= 4}\mathbf{\sin}\mathbf{x}\mathbf{-}\mathbf{\sin}\mathbf{2}\mathbf{x,(0}\mathbf{\leq}\mathbf{x}\mathbf{\leq}\mathbf{\pi)} is

A

πcot1(12)\pi - \cot^{- 1}\left( \frac{1}{2} \right)

B

πtan1(2)\pi - \tan^{- 1}(2)

C

π+tan1(12)\pi + \tan^{- 1}\left( - \frac{1}{2} \right)

D

None of these

Answer

π+tan1(12)\pi + \tan^{- 1}\left( - \frac{1}{2} \right)

Explanation

Solution

Given equation is cos2x2cosx=4sinxsin2x\cos^{2}x - 2\cos x = 4\sin x - \sin 2x

cos2x2cosx=4sinx2sinxcosxcosx(cosx2)=2sinx(2cosx)(cosx2)(cosx+2sinx)=0cosx+2sinx=0(cosx2)tanx=12x=nπ+tan1(12),nI\mathbf{\Rightarrow}\mathbf{\cos}^{\mathbf{2}}\mathbf{x}\mathbf{- 2}\mathbf{\cos}\mathbf{x}\mathbf{= 4}\mathbf{\sin}\mathbf{x}\mathbf{- 2}\mathbf{\sin}\mathbf{x}\mathbf{\cos}\mathbf{x}\mathbf{\Rightarrow}\mathbf{\cos}\mathbf{x}\mathbf{(}\mathbf{\cos}\mathbf{x}\mathbf{- 2) = 2}\mathbf{\sin}\mathbf{x}\mathbf{(2 -}\mathbf{\cos}\mathbf{x}\mathbf{)}\mathbf{\Rightarrow (}\mathbf{\cos}\mathbf{x}\mathbf{- 2)(}\mathbf{\cos}\mathbf{x}\mathbf{+ 2}\mathbf{\sin}\mathbf{x}\mathbf{) = 0}\mathbf{\Rightarrow}\mathbf{\cos}\mathbf{x}\mathbf{+ 2}\mathbf{\sin}\mathbf{x}\mathbf{= 0(\because}\mathbf{\cos}\mathbf{x}\mathbf{\neq 2) \Rightarrow}\mathbf{\tan}\mathbf{x}\mathbf{= -}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{\Rightarrow}\mathbf{x = n\pi +}\mathbf{\tan}^{\mathbf{-}\mathbf{1}}\left( \mathbf{-}\frac{\mathbf{1}}{\mathbf{2}} \right)\mathbf{,n}\mathbf{\in}\mathbf{I}As

0xπ,0 \leq x \leq \pi, therefore x=π+tan1(12)x = \pi + \tan^{- 1}\left( - \frac{1}{2} \right).