Solveeit Logo

Question

Question: The solution of the equation \(\log_{7}\log_{5}\) \((\sqrt{x^{2} + 5 + x}) = 0\)...

The solution of the equation log7log5\log_{7}\log_{5} (x2+5+x)=0(\sqrt{x^{2} + 5 + x}) = 0

A

x=2x = 2

B

x=3x = 3

C

x=4x = 4

D

x=2x = - 2

Answer

x=4x = 4

Explanation

Solution

log7log5(x2+5+x)=0=log71\log_{7}{\log_{5}(}\sqrt{x^{2} + 5 + x}) = 0 = \log_{7}1

134+6292=[112+(13)2]+2.11.13\Rightarrow 134 + \sqrt{6292} = \lbrack 11^{2} + (\sqrt{13})^{2}\rbrack + 2.11.\sqrt{13}

(x2+5+x)1/2=5\Rightarrow (x^{2} + 5 + x)^{1/2} = 5

(x2+x+5)=25\Rightarrow (x^{2} + x + 5) = 25 \Rightarrow x2+x20=0x^{2} + x - 20 = 0

(x4)(x+5)=0x=4,5\Rightarrow (x - 4)(x + 5) = 0 \Rightarrow x = 4, - 5x=4x = 4.