Solveeit Logo

Question

Question: The solution of the equation <img src="https://cdn.pureessence.tech/canvas_87.png?top_left_x=0&top_l...

The solution of the equation =(1+a)(1+a2)(1+a4)= ( 1 + a ) \left( 1 + a ^ { 2 } \right) \left( 1 + a ^ { 4 } \right) is given by xx is equal to.

A

3

B

5

C

7

D

None of these

Answer

7

Explanation

Solution

We have

\Rightarrow (1ax+1)(1a)=(1+a)(1+a2)+(1+a4)\frac { \left( 1 - a ^ { x + 1 } \right) } { ( 1 - a ) } = ( 1 + a ) \left( 1 + a ^ { 2 } \right) + \left( 1 + a ^ { 4 } \right)

\Rightarrow (1ax+1)=(1a)(1+a)(1+a2)(1+a4)\left( 1 - a ^ { x + 1 } \right) = ( 1 - a ) ( 1 + a ) \left( 1 + a ^ { 2 } \right) \left( 1 + a ^ { 4 } \right)

\Rightarrow (1ax+1)=(1a8)\left( 1 - a ^ { x + 1 } \right) = \left( 1 - a ^ { 8 } \right) \Rightarrow x+1=8x + 1 = 8 \Rightarrow x=7x = 7.