Solveeit Logo

Question

Question: The solution of the equation \(\frac { d y } { d x } = ( x + y ) ^ { 2 }\) is...

The solution of the equation dydx=(x+y)2\frac { d y } { d x } = ( x + y ) ^ { 2 } is

A

x+y+tan(x+c)=0x + y + \tan ( x + c ) = 0

B

xy+tan(x+c)=0x - y + \tan ( x + c ) = 0

C

x+ytan(x+c)=0x + y - \tan ( x + c ) = 0

D

None of these

Answer

x+ytan(x+c)=0x + y - \tan ( x + c ) = 0

Explanation

Solution

Put x+y=vx + y = v and 1+dydx=dvdx1 + \frac { d y } { d x } = \frac { d v } { d x }

dvdx=v2+1\frac { d v } { d x } = v ^ { 2 } + 1dvv2+1=dx\frac { d v } { v ^ { 2 } + 1 } = d x

On integrating, we getd

tan1v=x+c\tan ^ { - 1 } v = x + cor v=tan(x+c)v = \tan ( x + c )x+y=tan(x+c)x + y = \tan ( x + c ) .