Solveeit Logo

Question

Question: The solution of the equation \(\sqrt { a + x } \frac { d y } { d x } + x = 0\) is...

The solution of the equation a+xdydx+x=0\sqrt { a + x } \frac { d y } { d x } + x = 0 is

A

3y+2a+x(x2a)=3c3 y + 2 \sqrt { a + x } \cdot ( x - 2 a ) = 3 c

B

3y+2x+a(x+2a)=3c3 y + 2 \sqrt { x + a } \cdot ( x + 2 a ) = 3 c

C

3y+x+a(x+2a)=3c3 y + \sqrt { x + a } \cdot ( x + 2 a ) = 3 c

D

None of these

Answer

3y+2a+x(x2a)=3c3 y + 2 \sqrt { a + x } \cdot ( x - 2 a ) = 3 c

Explanation

Solution

a+xdydx+x=0\sqrt { a + x } \frac { d y } { d x } + x = 0dy=xa+xdx\int d y = - \int \frac { x } { \sqrt { a + x } } d x

y=a+xdx+aa+xdxy = - \int \sqrt { a + x } d x + \int \frac { a } { \sqrt { a + x } } d x

{xa+xdx=x+aaa+xdx}\left\{ \because \int \frac { x } { \sqrt { a + x } } d x = \int \frac { x + a - a } { \sqrt { a + x } } d x \right\}

y=23(a+x)3/2+2aa+x+cy = - \frac { 2 } { 3 } ( a + x ) ^ { 3 / 2 } + 2 a \sqrt { a + x } + c

3y=a+x(2(a+x)6a)+3c3 y = - \sqrt { a + x } ( 2 ( a + x ) - 6 a ) + 3 c

3y=2a+x(x2a)+3c3 y = - 2 \sqrt { a + x } ( x - 2 a ) + 3 c

3y+2a+x(x2a)=3c3 y + 2 \sqrt { a + x } ( x - 2 a ) = 3 c .