Solveeit Logo

Question

Question: The solution of the equation \(\frac { d y } { d x } = y \left( e ^ { x } + 1 \right)\)is...

The solution of the equation dydx=y(ex+1)\frac { d y } { d x } = y \left( e ^ { x } + 1 \right)is

A

y+e(ex+x+c)=0y + e ^ { \left( e ^ { x } + x + c \right) } = 0

B

logy=ex+x+c\log y = e ^ { x } + x + c

C

logy+ex=x+c\log y + e ^ { x } = x + c

D

None of these

Answer

logy=ex+x+c\log y = e ^ { x } + x + c

Explanation

Solution

dydx=y(ex+1)\frac { d y } { d x } = y \left( e ^ { x } + 1 \right)dyy=(ex+1)dx\frac { d y } { y } = \left( e ^ { x } + 1 \right) d x

Integrating both sides, we get

logy=ex+x+c\log y = e ^ { x } + x + c .