Solveeit Logo

Question

Question: The solution of the equation \(\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = 1\)is...

The solution of the equation (1+x2)dydx=1\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = 1is

A

y=log(1+x2)+cy = \log \left( 1 + x ^ { 2 } \right) + c

B

y+log(1+x2)+c=0y + \log \left( 1 + x ^ { 2 } \right) + c = 0

C

ylog(1+x)=cy - \log ( 1 + x ) = c

D

y=tan1x+cy = \tan ^ { - 1 } x + c

Answer

y=tan1x+cy = \tan ^ { - 1 } x + c

Explanation

Solution

(1+x2)dydx=1\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = 1dydx=11+x2\frac { d y } { d x } = \frac { 1 } { 1 + x ^ { 2 } }

On integrating, y=tan1x+cy = \tan ^ { - 1 } x + c .