Solveeit Logo

Question

Question: The solution of the equation \(\frac{dy}{dx} - \frac{2y}{x} = x^{3}\) is...

The solution of the equation dydx2yx=x3\frac{dy}{dx} - \frac{2y}{x} = x^{3} is

A

2y = x6 + cx2

B

2y = cx2 – x6

C

2y = cx2 + x4

D

None

Answer

2y = cx2 + x4

Explanation

Solution

dydx2xy=x3\frac{dy}{dx} - \frac{2}{x}y = x^{3}

\ I.F. = e2xdx=e2lnx=1x2e^{- \int_{}^{}{\frac{2}{x}dx}} = e^{- 2\ln x} = \frac{1}{x^{2}}

solution y1x2=x3.1x2dx+Cy \cdot \frac{1}{x^{2}} = \int_{}^{}{x^{3}.\frac{1}{x^{2}}}dx + CŽ yx2=x22+C\frac{y}{x^{2}} = \frac{x^{2}}{2} + C

Ž 2y = x4 + Cx2